提交 02a5b86e 编写于 作者: C cuicheng01 提交者: ruri

Add Res2Net101_vd and Res2Net200_vd pretrained model (#4180)

上级 844afdf1
......@@ -634,6 +634,8 @@ python -m paddle.distributed.launch train.py \
|[Res2Net50_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar) | 79.33% | 94.57% | 10.731 | 8.274 |
|[Res2Net50_vd_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar) | 79.75% | 94.91% | 11.012 | 8.493 |
|[Res2Net50_14w_8s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar) | 79.46% | 94.70% | 16.937 | 10.205 |
|[Res2Net101_vd_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar) | 80.64% | 95.22% | 19.612 | 14.651 |
|[Res2Net200_vd_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar) | 81.21% | 95.71% | 35.809 | 26.479 |
### ResNeXt Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
......@@ -789,7 +791,8 @@ python -m paddle.distributed.launch train.py \
- 2019/09/11 **Stage8**: 更新ResNet18_vd,ResNet34_vd,MobileNetV1_x0_25,MobileNetV1_x0_5,MobileNetV1_x0_75,MobileNetV2_x0_75,MobilenNetV3_small_x1_0,DPN68,DPN92,DPN98,DPN107,DPN131,ResNeXt101_vd_32x4d,ResNeXt152_vd_64x4d,Xception65,Xception71,Xception41_deeplab,Xception65_deeplab,SE_ResNet50_vd
- 2019/09/20 更新EfficientNet
- 2019/11/28 **Stage9**: 更新SE_ResNet18_vd,SE_ResNet34_vd,SE_ResNeXt50_vd_32x4d,ResNeXt152_vd_32x4d,Res2Net50_26w_4s,Res2Net50_14w_8s,Res2Net50_vd_26w_4s,HRNet_W18_C,HRNet_W30_C,HRNet_W32_C,HRNet_W40_C,HRNet_W44_C,HRNet_W48_C,HRNet_W64_C
- 2020/1/7 **Stage10**: 添加AutoDL Series
- 2020/01/07 **Stage10**: 更新AutoDL Series
- 2020/01/09 **Stage11**: 更新Res2Net101_vd_26w_4s, Res2Net200_vd_26w_4s
## 如何贡献代码
......
......@@ -471,6 +471,13 @@ Pretrained models can be downloaded by clicking related model names.
|[ShuffleNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar) | 73.15% | 91.20% | 6.430 | 3.954 |
|[ShuffleNetV2_swish](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar) | 70.03% | 89.17% | 6.078 | 4.976 |
### AutoDL Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[DARTS_4M](https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_4M_pretrained.tar) | 75.23% | 92.15% | 13.572 | 6.335 |
|[DARTS_6M](https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_6M_pretrained.tar) | 76.03% | 92.79% | 16.406 | 6.864 |
- AutoDL is improved based on DARTS, Local Rademacher Complexity is introduced to control overfitting, and model size is flexibly adjusted through Resource Constraining.
### ResNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
......@@ -496,6 +503,8 @@ Pretrained models can be downloaded by clicking related model names.
|[Res2Net50_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar) | 79.33% | 94.57% | 10.731 | 8.274 |
|[Res2Net50_vd_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar) | 79.75% | 94.91% | 11.012 | 8.493 |
|[Res2Net50_14w_8s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar) | 79.46% | 94.70% | 16.937 | 10.205 |
|[Res2Net101_vd_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar) | 80.64% | 95.22% | 19.612 | 14.651 |
|[Res2Net200_vd_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar) | 81.21% | 95.71% | 35.809 | 26.479 |
### ResNeXt Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
......@@ -652,6 +661,8 @@ Enforce failed. Expected x_dims[1] == labels_dims[1], but received x_dims[1]:100
- 2019/09/11 **Stage8**: Update ResNet18_vd,ResNet34_vd,MobileNetV1_x0_25,MobileNetV1_x0_5,MobileNetV1_x0_75,MobileNetV2_x0_75,MobilenNetV3_small_x1_0,DPN68,DPN92,DPN98,DPN107,DPN131,ResNeXt101_vd_32x4d,ResNeXt152_vd_64x4d,Xception65,Xception71,Xception41_deeplab,Xception65_deeplab,SE_ResNet50_vd
- 2019/09/20 Update EfficientNet
- 2019/11/28 **Stage9**: Update SE_ResNet18_vd,SE_ResNet34_vd,SE_ResNeXt50_vd_32x4d,ResNeXt152_vd_32x4d,Res2Net50_26w_4s,Res2Net50_14w_8s,Res2Net50_vd_26w_4s,HRNet_W18_C,HRNet_W30_C,HRNet_W32_C,HRNet_W40_C,HRNet_W44_C,HRNet_W48_C,HRNet_W64_C
- 2020/01/07 **Stage10**: Update AutoDL Series
- 2020/01/09 **Stage11**: Update Res2Net101_vd_26w_4s, Res2Net200_vd_26w_4s
## Contribute
......
#Res2Net101_vd_26w_4s
python train.py \
--model=Res2Net101_vd_26w_4s \
--batch_size=256 \
--total_images=1281167 \
--class_dim=1000 \
--lr_strategy=cosine_decay \
--lr=0.1 \
--num_epochs=200 \
--model_save_dir=output/ \
--l2_decay=1e-4 \
--use_mixup=True \
--use_label_smoothing=True \
--label_smoothing_epsilon=0.1
#Res2Net200_vd_26w_4s
python train.py \
--model=Res2Net200_vd_26w_4s \
--batch_size=256 \
--total_images=1281167 \
--class_dim=1000 \
--lr_strategy=cosine_decay \
--lr=0.1 \
--num_epochs=200 \
--model_save_dir=output/ \
--l2_decay=1e-4 \
--use_mixup=True \
--use_label_smoothing=True \
--label_smoothing_epsilon=0.1
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册