Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
02a5b86e
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
02a5b86e
编写于
1月 09, 2020
作者:
C
cuicheng01
提交者:
ruri
1月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Res2Net101_vd and Res2Net200_vd pretrained model (#4180)
上级
844afdf1
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
45 addition
and
1 deletion
+45
-1
PaddleCV/image_classification/README.md
PaddleCV/image_classification/README.md
+4
-1
PaddleCV/image_classification/README_en.md
PaddleCV/image_classification/README_en.md
+11
-0
PaddleCV/image_classification/scripts/train/Res2Net101_vd_26w_4s.sh
...mage_classification/scripts/train/Res2Net101_vd_26w_4s.sh
+15
-0
PaddleCV/image_classification/scripts/train/Res2Net200_vd_26w_4s.sh
...mage_classification/scripts/train/Res2Net200_vd_26w_4s.sh
+15
-0
未找到文件。
PaddleCV/image_classification/README.md
浏览文件 @
02a5b86e
...
...
@@ -634,6 +634,8 @@ python -m paddle.distributed.launch train.py \
|
[
Res2Net50_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar
)
| 79.33% | 94.57% | 10.731 | 8.274 |
|
[
Res2Net50_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar
)
| 79.75% | 94.91% | 11.012 | 8.493 |
|
[
Res2Net50_14w_8s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar
)
| 79.46% | 94.70% | 16.937 | 10.205 |
|
[
Res2Net101_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar
)
| 80.64% | 95.22% | 19.612 | 14.651 |
|
[
Res2Net200_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar
)
| 81.21% | 95.71% | 35.809 | 26.479 |
### ResNeXt Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
...
...
@@ -789,7 +791,8 @@ python -m paddle.distributed.launch train.py \
-
2019/09/11
**Stage8**
: 更新ResNet18_vd,ResNet34_vd,MobileNetV1_x0_25,MobileNetV1_x0_5,MobileNetV1_x0_75,MobileNetV2_x0_75,MobilenNetV3_small_x1_0,DPN68,DPN92,DPN98,DPN107,DPN131,ResNeXt101_vd_32x4d,ResNeXt152_vd_64x4d,Xception65,Xception71,Xception41_deeplab,Xception65_deeplab,SE_ResNet50_vd
-
2019/09/20 更新EfficientNet
-
2019/11/28
**Stage9**
: 更新SE_ResNet18_vd,SE_ResNet34_vd,SE_ResNeXt50_vd_32x4d,ResNeXt152_vd_32x4d,Res2Net50_26w_4s,Res2Net50_14w_8s,Res2Net50_vd_26w_4s,HRNet_W18_C,HRNet_W30_C,HRNet_W32_C,HRNet_W40_C,HRNet_W44_C,HRNet_W48_C,HRNet_W64_C
-
2020/1/7
**Stage10**
: 添加AutoDL Series
-
2020/01/07
**Stage10**
: 更新AutoDL Series
-
2020/01/09
**Stage11**
: 更新Res2Net101_vd_26w_4s, Res2Net200_vd_26w_4s
## 如何贡献代码
...
...
PaddleCV/image_classification/README_en.md
浏览文件 @
02a5b86e
...
...
@@ -471,6 +471,13 @@ Pretrained models can be downloaded by clicking related model names.
|
[
ShuffleNetV2_x2_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar
)
| 73.15% | 91.20% | 6.430 | 3.954 |
|
[
ShuffleNetV2_swish
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar
)
| 70.03% | 89.17% | 6.078 | 4.976 |
### AutoDL Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
DARTS_4M
](
https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_4M_pretrained.tar
)
| 75.23% | 92.15% | 13.572 | 6.335 |
|
[
DARTS_6M
](
https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_6M_pretrained.tar
)
| 76.03% | 92.79% | 16.406 | 6.864 |
-
AutoDL is improved based on DARTS, Local Rademacher Complexity is introduced to control overfitting, and model size is flexibly adjusted through Resource Constraining.
### ResNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
...
...
@@ -496,6 +503,8 @@ Pretrained models can be downloaded by clicking related model names.
|
[
Res2Net50_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar
)
| 79.33% | 94.57% | 10.731 | 8.274 |
|
[
Res2Net50_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar
)
| 79.75% | 94.91% | 11.012 | 8.493 |
|
[
Res2Net50_14w_8s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar
)
| 79.46% | 94.70% | 16.937 | 10.205 |
|
[
Res2Net101_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar
)
| 80.64% | 95.22% | 19.612 | 14.651 |
|
[
Res2Net200_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar
)
| 81.21% | 95.71% | 35.809 | 26.479 |
### ResNeXt Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
...
...
@@ -652,6 +661,8 @@ Enforce failed. Expected x_dims[1] == labels_dims[1], but received x_dims[1]:100
-
2019/09/11
**Stage8**
: Update ResNet18_vd,ResNet34_vd,MobileNetV1_x0_25,MobileNetV1_x0_5,MobileNetV1_x0_75,MobileNetV2_x0_75,MobilenNetV3_small_x1_0,DPN68,DPN92,DPN98,DPN107,DPN131,ResNeXt101_vd_32x4d,ResNeXt152_vd_64x4d,Xception65,Xception71,Xception41_deeplab,Xception65_deeplab,SE_ResNet50_vd
-
2019/09/20 Update EfficientNet
-
2019/11/28
**Stage9**
: Update SE_ResNet18_vd,SE_ResNet34_vd,SE_ResNeXt50_vd_32x4d,ResNeXt152_vd_32x4d,Res2Net50_26w_4s,Res2Net50_14w_8s,Res2Net50_vd_26w_4s,HRNet_W18_C,HRNet_W30_C,HRNet_W32_C,HRNet_W40_C,HRNet_W44_C,HRNet_W48_C,HRNet_W64_C
-
2020/01/07
**Stage10**
: Update AutoDL Series
-
2020/01/09
**Stage11**
: Update Res2Net101_vd_26w_4s, Res2Net200_vd_26w_4s
## Contribute
...
...
PaddleCV/image_classification/scripts/train/Res2Net101_vd_26w_4s.sh
0 → 100644
浏览文件 @
02a5b86e
#Res2Net101_vd_26w_4s
python train.py
\
--model
=
Res2Net101_vd_26w_4s
\
--batch_size
=
256
\
--total_images
=
1281167
\
--class_dim
=
1000
\
--lr_strategy
=
cosine_decay
\
--lr
=
0.1
\
--num_epochs
=
200
\
--model_save_dir
=
output/
\
--l2_decay
=
1e-4
\
--use_mixup
=
True
\
--use_label_smoothing
=
True
\
--label_smoothing_epsilon
=
0.1
PaddleCV/image_classification/scripts/train/Res2Net200_vd_26w_4s.sh
0 → 100644
浏览文件 @
02a5b86e
#Res2Net200_vd_26w_4s
python train.py
\
--model
=
Res2Net200_vd_26w_4s
\
--batch_size
=
256
\
--total_images
=
1281167
\
--class_dim
=
1000
\
--lr_strategy
=
cosine_decay
\
--lr
=
0.1
\
--num_epochs
=
200
\
--model_save_dir
=
output/
\
--l2_decay
=
1e-4
\
--use_mixup
=
True
\
--use_label_smoothing
=
True
\
--label_smoothing_epsilon
=
0.1
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录