Evaluation is to evaluate the performance of a trained model. One can download [pretrained models](#supported-models) and set its path to ```path_to_pretrain_model```. Then Recall@Rank-1 can be obtained by running the following command:
Evaluation is to evaluate the performance of a trained model. You should set model path to ```path_to_pretrain_model```. Then Recall@Rank-1 can be obtained by running the following command:
```
python eval.py \
--model=ResNet50 \
...
...
@@ -103,9 +103,11 @@ For comparation, many metric learning models with different neural networks and
|fine-tuned with triplet | 78.37% | 79.21%
|fine-tuned with quadruplet | 78.10% | 79.59%
|fine-tuned with eml | 79.32% | 80.11%
|fine-tuned with npairs | - | 79.81%
## Reference
- ArcFace: Additive Angular Margin Loss for Deep Face Recognition [link](https://arxiv.org/abs/1801.07698)
- Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification [link](https://arxiv.org/abs/1710.00478)
- Large Scale Strongly Supervised Ensemble Metric Learning, with Applications to Face Verification and Retrieval [link](https://arxiv.org/abs/1212.6094)
- Improved Deep Metric Learning with Multi-class N-pair Loss Objective [link](http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf)
- ArcFace: Additive Angular Margin Loss for Deep Face Recognition [链接](https://arxiv.org/abs/1801.07698)
- Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification [链接](https://arxiv.org/abs/1710.00478)
- Large Scale Strongly Supervised Ensemble Metric Learning, with Applications to Face Verification and Retrieval [链接](https://arxiv.org/abs/1212.6094)
- Improved Deep Metric Learning with Multi-class N-pair Loss Objective [链接](http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf)