提交 0116b8b9 编写于 作者: chrisxu2014's avatar chrisxu2014

Add 3 augmentor classes and related unittests

上级 2c552f9c
...@@ -11,49 +11,53 @@ import numpy as np ...@@ -11,49 +11,53 @@ import numpy as np
random_seed=0 random_seed=0
#audio instance #audio instance
audio_data=[3.05175781e-05, -8.54492188e-04, -1.09863281e-03, -9.46044922e-04,\ audio_data = [3.0517571e-05, -8.54492188e-04, -1.09863281e-03, -9.4604492e-04,\
-1.31225586e-03, -1.09863281e-03, -1.73950195e-03, -2.10571289e-03,\ -1.31225586e-03, -1.09863281e-03, -1.73950195e-03, -2.1057189e-03,\
-2.04467773e-03, -1.46484375e-03, -1.43432617e-03, -9.46044922e-04,\ -2.04467773e-03, -1.46484375e-03, -1.43432617e-03, -9.4604492e-04,\
-1.95312500e-03, -1.86157227e-03, -2.10571289e-03, -2.31933594e-03,\ -1.95312500e-03, -1.86157227e-03, -2.10571289e-03, -2.3193354e-03,\
-2.01416016e-03, -2.62451172e-03, -2.07519531e-03, -2.38037109e-03] -2.01416016e-03, -2.62451172e-03, -2.07519531e-03, -2.3803719e-03]
audio_data = np.array(audio_data) audio_data = np.array(audio_data)
samplerate = 10 samplerate = 10
class TestAugmentor(unittest.TestCase): class TestAugmentor(unittest.TestCase):
def test_volume(self): def test_volume(self):
augmentation_config='[{"type": "volume","params": {"min_gain_dBFS": -15, "max_gain_dBFS": 15},"prob": 1.0}]' config_json = '[{"type": "volume","params": {"min_gain_dBFS": -15, '\
augmentation_pipeline = AugmentationPipeline(augmentation_config=augmentation_config, '"max_gain_dBFS": 15},"prob": 1.0}]'
random_seed=random_seed) aug_pipeline = AugmentationPipeline(augmentation_config=config_json,
audio_segment = audio.AudioSegment(audio_data, samplerate) random_seed=random_seed)
augmentation_pipeline.transform_audio(audio_segment) audio_seg = audio.AudioSegment(audio_data, samplerate)
original_audio = audio.AudioSegment(audio_data, samplerate) aug_pipeline.transform_audio(audio_seg)
self.assertFalse(np.any(audio_segment.samples == original_audio.samples)) orig_audio = audio.AudioSegment(audio_data, samplerate)
self.assertFalse(np.any(audio_seg.samples == orig_audio.samples))
def test_speed(self): def test_speed(self):
augmentation_config='[{"type": "speed","params": {"min_speed_rate": 1.2,"max_speed_rate": 1.4},"prob": 1.0}]' config_json = '[{"type":"speed","params": {"min_speed_rate": 1.2,' \
augmentation_pipeline = AugmentationPipeline(augmentation_config=augmentation_config, '"max_speed_rate": 1.4},"prob": 1.0}]'
random_seed=random_seed) aug_pipeline = AugmentationPipeline(augmentation_config=config_json,
audio_segment = audio.AudioSegment(audio_data, samplerate) random_seed=random_seed)
augmentation_pipeline.transform_audio(audio_segment) audio_seg = audio.AudioSegment(audio_data, samplerate)
original_audio = audio.AudioSegment(audio_data, samplerate) aug_pipeline.transform_audio(audio_seg)
self.assertFalse(np.any(audio_segment.samples == original_audio.samples)) orig_audio = audio.AudioSegment(audio_data, samplerate)
self.assertFalse(np.any(audio_seg.samples == orig_audio.samples))
def test_resample(self): def test_resample(self):
augmentation_config='[{"type": "resample","params": {"new_sample_rate":5},"prob": 1.0}]' config_json = '[{"type":"resample","params": {"new_sample_rate":5},'\
augmentation_pipeline = AugmentationPipeline(augmentation_config=augmentation_config, '"prob": 1.0}]'
random_seed=random_seed) aug_pipeline = AugmentationPipeline(augmentation_config=config_json,
audio_segment = audio.AudioSegment(audio_data, samplerate) random_seed=random_seed)
augmentation_pipeline.transform_audio(audio_segment) audio_seg = audio.AudioSegment(audio_data, samplerate)
self.assertTrue(audio_segment.sample_rate == 5) aug_pipeline.transform_audio(audio_seg)
self.assertTrue(audio_seg.sample_rate == 5)
def test_bayesial(self): def test_bayesial(self):
augmentation_config='[{"type": "bayesian_normal","params": {"target_db": -20, "prior_db": -4, "prior_samples": -8, "startup_delay": 0.0},"prob": 1.0}]' config_json = '[{"type":"bayesian_normal","params":{"target_db":-20,' \
augmentation_pipeline = AugmentationPipeline(augmentation_config=augmentation_config, '"prior_db":-4, "prior_samples": -8, "startup_delay": 0.0},"prob":1.0}]'
random_seed=random_seed) aug_pipeline = AugmentationPipeline(augmentation_config=config_json,
audio_segment = audio.AudioSegment(audio_data, samplerate) random_seed=random_seed)
augmentation_pipeline.transform_audio(audio_segment) audio_seg = audio.AudioSegment(audio_data, samplerate)
original_audio = audio.AudioSegment(audio_data, samplerate) aug_pipeline.transform_audio(audio_seg)
self.assertFalse(np.any(audio_segment.samples == original_audio.samples)) orig_audio = audio.AudioSegment(audio_data, samplerate)
self.assertFalse(np.any(audio_seg.samples == orig_audio.samples))
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册