train.py 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial
import argparse
import os
import random
import time

import numpy as np
import paddle
import paddle.nn.functional as F

import paddlenlp as ppnlp
26 27
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.transformers import LinearDecayWithWarmup
28 29 30

from model import SentenceTransformer

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--save_dir", default='./checkpoint', type=str, help="The output directory where the model checkpoints will be written.")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. "
    "Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--epochs", default=3, type=int, help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proption", default=0.0, type=float, help="Linear warmup proption over the training process.")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument("--seed", type=int, default=1000, help="random seed for initialization")
parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs to use, 0 for CPU.")
args = parser.parse_args()
# yapf: enable


def set_seed(seed):
49
    """sets random seed"""
50 51 52
    random.seed(seed)
    np.random.seed(seed)
    paddle.seed(seed)
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71


@paddle.no_grad()
def evaluate(model, criterion, metric, data_loader):
    """
    Given a dataset, it evals model and computes the metric.

    Args:
        model(obj:`paddle.nn.Layer`): A model to classify texts.
        data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
        criterion(obj:`paddle.nn.Layer`): It can compute the loss.
        metric(obj:`paddle.metric.Metric`): The evaluation metric.
    """
    model.eval()
    metric.reset()
    losses = []
    for batch in data_loader:
        query_input_ids, query_segment_ids, title_input_ids, title_segment_ids, labels = batch
        probs = model(
72 73
            query_input_ids=query_input_ids,
            title_input_ids=title_input_ids,
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
            query_token_type_ids=query_segment_ids,
            title_token_type_ids=title_segment_ids)
        loss = criterion(probs, labels)
        losses.append(loss.numpy())
        correct = metric.compute(probs, labels)
        metric.update(correct)
        accu = metric.accumulate()
    print("eval loss: %.5f, accu: %.5f" % (np.mean(losses), accu))
    model.train()
    metric.reset()


def convert_example(example,
                    tokenizer,
                    label_list,
                    max_seq_length=512,
                    is_test=False):
    """
    Builds model inputs from a sequence or a pair of sequence for sequence classification tasks
    by concatenating and adding special tokens. And creates a mask from the two sequences passed 
    to be used in a sequence-pair classification task.
        
    A BERT sequence has the following format:

    - single sequence: ``[CLS] X [SEP]``
    - pair of sequences: ``[CLS] A [SEP] B [SEP]``

    A BERT sequence pair mask has the following format:
    ::
        0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence |

    If only one sequence, only returns the first portion of the mask (0's).


    Args:
        example(obj:`list[str]`): List of input data, containing query, title and label if it have label.
        tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer` 
            which contains most of the methods. Users should refer to the superclass for more information regarding methods.
        label_list(obj:`list[str]`): All the labels that the data has.
        max_seq_len(obj:`int`): The maximum total input sequence length after tokenization. 
            Sequences longer than this will be truncated, sequences shorter will be padded.
        is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.

    Returns:
        query_input_ids(obj:`list[int]`): The list of query token ids.
        query_segment_ids(obj: `list[int]`): List of query sequence pair mask.
        title_input_ids(obj:`list[int]`): The list of title token ids.
        title_segment_ids(obj: `list[int]`): List of title sequence pair mask.
        label(obj:`numpy.array`, data type of int64, optional): The input label if not is_test.
    """
    query, title = example[0], example[1]

    query_encoded_inputs = tokenizer.encode(
        text=query, max_seq_len=max_seq_length)
    query_input_ids = query_encoded_inputs["input_ids"]
    query_segment_ids = query_encoded_inputs["segment_ids"]

    title_encoded_inputs = tokenizer.encode(
        text=title, max_seq_len=max_seq_length)
    title_input_ids = title_encoded_inputs["input_ids"]
    title_segment_ids = title_encoded_inputs["segment_ids"]

    if not is_test:
        # create label maps if classification task
        label = example[-1]
        label_map = {}
        for (i, l) in enumerate(label_list):
            label_map[l] = i
        label = label_map[label]
        label = np.array([label], dtype="int64")
        return query_input_ids, query_segment_ids, title_input_ids, title_segment_ids, label
    else:
        return query_input_ids, query_segment_ids, title_input_ids, title_segment_ids


def create_dataloader(dataset,
                      mode='train',
                      batch_size=1,
                      batchify_fn=None,
                      trans_fn=None):
    if trans_fn:
        dataset = dataset.apply(trans_fn, lazy=True)

    shuffle = True if mode == 'train' else False
    if mode == 'train':
        batch_sampler = paddle.io.DistributedBatchSampler(
            dataset, batch_size=batch_size, shuffle=shuffle)
    else:
        batch_sampler = paddle.io.BatchSampler(
            dataset, batch_size=batch_size, shuffle=shuffle)

    return paddle.io.DataLoader(
        dataset=dataset,
        batch_sampler=batch_sampler,
        collate_fn=batchify_fn,
        return_list=True)


173 174
def do_train():
    set_seed(args.seed)
175 176 177 178 179 180 181
    paddle.set_device("gpu" if args.n_gpu else "cpu")
    world_size = paddle.distributed.get_world_size()
    if world_size > 1:
        paddle.distributed.init_parallel_env()

    train_dataset, dev_dataset, test_dataset = ppnlp.datasets.LCQMC.get_datasets(
        ['train', 'dev', 'test'])
182 183 184 185 186 187 188 189 190 191 192 193 194

    # If you wanna use bert/roberta pretrained model,
    # pretrained_model = ppnlp.transformers.BertModel.from_pretrained('bert-base-chinese') 
    # pretrained_model = ppnlp.transformers.RobertaModel.from_pretrained('roberta-wwm-ext')
    pretrained_model = ppnlp.transformers.ErnieModel.from_pretrained(
        'ernie-tiny')

    # If you wanna use bert/roberta pretrained model,
    # tokenizer = ppnlp.transformers.BertTokenizer.from_pretrained('bert-base-chinese')
    # tokenizer = ppnlp.transformers.RobertaTokenizer.from_pretrained('roberta-wwm-ext')
    # ErnieTinyTokenizer is special for ernie-tiny pretained model.
    tokenizer = ppnlp.transformers.ErnieTinyTokenizer.from_pretrained(
        'ernie-tiny')
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

    trans_func = partial(
        convert_example,
        tokenizer=tokenizer,
        label_list=train_dataset.get_labels(),
        max_seq_length=args.max_seq_length)
    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # query_input
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # query_segment
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # title_input
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # tilte_segment
        Stack(dtype="int64")  # label
    ): [data for data in fn(samples)]
    train_data_loader = create_dataloader(
        train_dataset,
        mode='train',
        batch_size=args.batch_size,
        batchify_fn=batchify_fn,
        trans_fn=trans_func)
    dev_data_loader = create_dataloader(
        dev_dataset,
        mode='dev',
        batch_size=args.batch_size,
        batchify_fn=batchify_fn,
        trans_fn=trans_func)
    test_data_loader = create_dataloader(
        test_dataset,
        mode='test',
        batch_size=args.batch_size,
        batchify_fn=batchify_fn,
        trans_fn=trans_func)

    model = SentenceTransformer(pretrained_model)

    if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
        state_dict = paddle.load(args.init_from_ckpt)
        model.set_dict(state_dict)
    model = paddle.DataParallel(model)

    num_training_steps = len(train_data_loader) * args.epochs
235 236 237 238

    lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps,
                                         args.warmup_proportion)

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            p.name for n, p in model.named_parameters()
            if not any(nd in n for nd in ["bias", "norm"])
        ])

    criterion = paddle.nn.loss.CrossEntropyLoss()
    metric = paddle.metric.Accuracy()

    global_step = 0
    tic_train = time.time()
    for epoch in range(1, args.epochs + 1):
        for step, batch in enumerate(train_data_loader, start=1):
            query_input_ids, query_segment_ids, title_input_ids, title_segment_ids, labels = batch
            probs = model(
257 258
                query_input_ids=query_input_ids,
                title_input_ids=title_input_ids,
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                query_token_type_ids=query_segment_ids,
                title_token_type_ids=title_segment_ids)
            loss = criterion(probs, labels)
            correct = metric.compute(probs, labels)
            metric.update(correct)
            acc = metric.accumulate()

            global_step += 1
            if global_step % 10 == 0 and paddle.distributed.get_rank() == 0:
                print(
                    "global step %d, epoch: %d, batch: %d, loss: %.5f, accu: %.5f, speed: %.2f step/s"
                    % (global_step, epoch, step, loss, acc,
                       10 / (time.time() - tic_train)))
                tic_train = time.time()
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            optimizer.clear_gradients()
            if global_step % 100 == 0 and paddle.distributed.get_rank() == 0:
                save_dir = os.path.join(args.save_dir, "model_%d" % global_step)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                evaluate(model, criterion, metric, dev_data_loader)
                save_param_path = os.path.join(save_dir, 'model_state.pdparams')
                paddle.save(model.state_dict(), save_param_path)
                tokenizer.save_pretrained(save_dir)

    if paddle.distributed.get_rank() == 0:
        print('Evaluating on test data.')
        evaluate(model, criterion, metric, test_data_loader)


if __name__ == "__main__":
    if args.n_gpu > 1:
293
        paddle.distributed.spawn(do_train, nprocs=args.n_gpu)
294
    else:
295
        do_train()