run_classifier.py 12.6 KB
Newer Older
P
pkpk 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT fine-tuning in Paddle Dygraph Mode."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import six
import sys
if six.PY2:
    reload(sys)
    sys.setdefaultencoding('utf8')
import ast
import time
import argparse
import numpy as np
import multiprocessing
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import to_variable
import reader.cls as reader
from model.bert import BertConfig
from model.cls import ClsModelLayer
from optimization import Optimizer
from utils.args import ArgumentGroup, print_arguments, check_cuda
from utils.init import init_from_static_model

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path",      str,  "./config/bert_config.json",  "Path to the json file for bert model config.")
model_g.add_arg("init_checkpoint",       str,  None,                         "Init checkpoint to resume training from.")
model_g.add_arg("init_pretraining_params",  str,  None,
                "Init pre-training params which preforms fine-tuning from. If the "
                "arg 'init_checkpoint' has been set, this argument wouldn't be valid.")
model_g.add_arg("checkpoints",           str,  "checkpoints",                "Path to save checkpoints.")

train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch",             int,    100,     "Number of epoches for training.")
train_g.add_arg("learning_rate",     float,  0.0001,  "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler",      str,    "linear_warmup_decay",
                "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay",      float,  0.01,    "Weight decay rate for L2 regularizer.")
train_g.add_arg("warmup_proportion",     float,  0.1,                         "Proportion of training steps to perform linear learning rate warmup for.")
train_g.add_arg("save_steps",        int,    10000,   "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps",  int,    1000,    "The steps interval to evaluate model performance.")
train_g.add_arg("loss_scaling",      float,  1.0,
                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")

log_g = ArgumentGroup(parser,     "logging", "logging related.")
log_g.add_arg("skip_steps",          int,    10,    "The steps interval to print loss.")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir",            str,  None,       "Path to training data.")
data_g.add_arg("vocab_path",          str,  None,       "Vocabulary path.")
data_g.add_arg("max_seq_len",         int,  512,                   "Tokens' number of the longest seqence allowed.")
data_g.add_arg("batch_size",          int,  32,
               "The total number of examples in one batch for training, see also --in_tokens.")
data_g.add_arg("in_tokens",           bool, False,
               "If set, the batch size will be the maximum number of tokens in one batch. "
               "Otherwise, it will be the maximum number of examples in one batch.")
data_g.add_arg("do_lower_case", bool, True,
               "Whether to lower case the input text. Should be True for uncased models and False for cased models.")
data_g.add_arg("random_seed",   int,  5512,     "Random seed.")

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("use_cuda",                     bool,   True,   "If set, use GPU for training.")
run_type_g.add_arg("shuffle",                      bool,   True,  "")
run_type_g.add_arg("task_name",                    str,    None,
                   "The name of task to perform fine-tuning, should be in {'xnli', 'mnli', 'cola', 'mrpc'}.")
run_type_g.add_arg("do_train",                     bool,   True,  "Whether to perform training.")
run_type_g.add_arg("do_test",                      bool,   False,  "Whether to perform evaluation on test data set.")
run_type_g.add_arg("use_data_parallel", bool, False,  "The flag indicating whether to shuffle instances in each pass.")

args = parser.parse_args()

def create_data(batch):
    """
    convert data to variable
    """
    src_ids = to_variable(batch[0], "src_ids")
    position_ids = to_variable(batch[1], "position_ids")
    sentence_ids = to_variable(batch[2], "sentence_ids")
    input_mask = to_variable(batch[3], "input_mask")
    labels = to_variable(batch[4], "labels")
    labels.stop_gradient = True
    return src_ids, position_ids, sentence_ids, input_mask, labels

if args.use_cuda:
    place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id)
    dev_count = fluid.core.get_cuda_device_count()
else:
    place = fluid.CPUPlace()
    dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def train(args):
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    if not (args.do_train or args.do_test):
        raise ValueError("For args `do_train`, `do_test`, at "
                        "least one of them must be True.")

    trainer_count = fluid.dygraph.parallel.Env().nranks

    task_name = args.task_name.lower()
    processors = {
        'xnli': reader.XnliProcessor,
        'cola': reader.ColaProcessor,
        'mrpc': reader.MrpcProcessor,
        'mnli': reader.MnliProcessor,
    }

    processor = processors[task_name](data_dir=args.data_dir,
                                      vocab_path=args.vocab_path,
                                      max_seq_len=args.max_seq_len,
                                      do_lower_case=args.do_lower_case,
                                      in_tokens=args.in_tokens,
                                      random_seed=args.random_seed)
    num_labels = len(processor.get_labels())
    shuffle_seed = 1 if trainer_count > 1 else None

    train_data_generator = processor.data_generator(
                                      batch_size=args.batch_size,
                                      phase='train',
                                      epoch=args.epoch,
                                      dev_count=trainer_count,
                                      shuffle=args.shuffle,
                                      shuffle_seed=shuffle_seed)
    num_train_examples = processor.get_num_examples(phase='train')
    max_train_steps = args.epoch * num_train_examples // args.batch_size // trainer_count
    warmup_steps = int(max_train_steps * args.warmup_proportion)

    print("Device count: %d" % dev_count)
    print("Trainer count: %d" % trainer_count)
    print("Num train examples: %d" % num_train_examples)
    print("Max train steps: %d" % max_train_steps)
    print("Num warmup steps: %d" % warmup_steps)

    with fluid.dygraph.guard(place):

        if args.use_data_parallel:
            strategy = fluid.dygraph.parallel.prepare_context()

        cls_model = ClsModelLayer(
                            args,
                            bert_config,
                            num_labels,
                            is_training=True,
                            return_pooled_out=True)

        optimizer = Optimizer(
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    model_cls=cls_model,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    loss_scaling=args.loss_scaling,
                    parameter_list=cls_model.parameters())

        if args.init_pretraining_params:
            print("Load pre-trained model from %s" % args.init_pretraining_params)
            init_from_static_model(args.init_pretraining_params, cls_model, bert_config)

        if args.use_data_parallel:
            cls_model = fluid.dygraph.parallel.DataParallel(cls_model, strategy)
            train_data_generator = fluid.contrib.reader.distributed_batch_reader(train_data_generator)

        steps = 0
        time_begin = time.time()

        for batch in train_data_generator():
            data_ids = create_data(batch)
            loss, accuracy, num_seqs = cls_model(data_ids)

            optimizer.optimization(loss, use_data_parallel = args.use_data_parallel, model = cls_model)
            cls_model.clear_gradients()

            if steps != 0 and steps % args.skip_steps == 0:
                time_end = time.time()
                used_time = time_end - time_begin
                current_example, current_epoch = processor.get_train_progress()
                localtime = time.asctime(time.localtime(time.time()))
                print("%s, epoch: %s, steps: %s, dy_graph loss: %f, acc: %f, speed: %f steps/s" % (localtime, current_epoch, steps, loss.numpy(), accuracy.numpy(), args.skip_steps / used_time))
                time_begin = time.time()

            if steps != 0 and steps % args.save_steps == 0 and fluid.dygraph.parallel.Env().local_rank == 0:
                save_path = os.path.join(args.checkpoints, "steps" + "_" + str(steps))
                fluid.save_dygraph(
                    cls_model.state_dict(),
                    save_path)
                fluid.save_dygraph(
                    optimizer.optimizer.state_dict(),
                    save_path)
                print("Save model parameters and optimizer status at %s" % save_path)

            steps += 1

        if fluid.dygraph.parallel.Env().local_rank == 0:
            save_path = os.path.join(args.checkpoints, "final")
            fluid.save_dygraph(
                cls_model.state_dict(),
                save_path)
            fluid.save_dygraph(
                optimizer.optimizer.state_dict(),
                save_path)
            print("Save model parameters and optimizer status at %s" % save_path)
        return cls_model

def predict(args, cls_model = None):

    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    task_name = args.task_name.lower()
    processors = {
        'xnli': reader.XnliProcessor,
        'cola': reader.ColaProcessor,
        'mrpc': reader.MrpcProcessor,
        'mnli': reader.MnliProcessor,
    }

    processor = processors[task_name](data_dir=args.data_dir,
            vocab_path=args.vocab_path,
            max_seq_len=args.max_seq_len,
            do_lower_case=args.do_lower_case,
            in_tokens=False)

    test_data_generator = processor.data_generator(
                                batch_size=args.batch_size,
                                phase='dev',
                                epoch=1,
                                shuffle=False)

    num_labels = len(processor.get_labels())

    with fluid.dygraph.guard(place):
        if cls_model is None:
            cls_model = ClsModelLayer(
                args,
                bert_config,
                num_labels,
                is_training=False,
                return_pooled_out=True)

            #restore the model
            save_path = os.path.join(args.checkpoints, "final")
            print("Load params from %s" % save_path)
            model_dict,_ = fluid.load_dygraph(save_path)
            cls_model.load_dict(model_dict)

        print('Do predicting ...... ')
        cls_model.eval()

        total_cost, total_acc, total_num_seqs = [], [], []

        for batch in test_data_generator():
            data_ids = create_data(batch)
            np_loss, np_acc, np_num_seqs = cls_model(data_ids)

            np_loss = np_loss.numpy()
            np_acc = np_acc.numpy()
            np_num_seqs = np_num_seqs.numpy()

            total_cost.extend(np_loss * np_num_seqs)
            total_acc.extend(np_acc * np_num_seqs)
            total_num_seqs.extend(np_num_seqs)

        print("[evaluation] average acc: %f" % (np.sum(total_acc) / np.sum(total_num_seqs)))


if __name__ == '__main__':

    print_arguments(args)
    check_cuda(args.use_cuda)

    if args.do_train:
        cls_model = train(args)
        if args.do_test:
            predict(args, cls_model = cls_model)

    elif args.do_test:
        predict(args)