crnn_ctc_model.py 8.1 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
W
wanghaoshuang 已提交
17
import paddle.fluid as fluid
18 19 20
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from paddle.fluid.initializer import init_on_cpu
import math
21
import six
W
wanghaoshuang 已提交
22 23 24 25 26 27 28 29


def conv_bn_pool(input,
                 group,
                 out_ch,
                 act="relu",
                 param=None,
                 bias=None,
W
wanghaoshuang 已提交
30
                 param_0=None,
31
                 is_test=False,
32 33
                 pooling=True,
                 use_cudnn=False):
W
wanghaoshuang 已提交
34
    tmp = input
35
    for i in six.moves.xrange(group):
W
wanghaoshuang 已提交
36 37 38 39 40 41 42
        tmp = fluid.layers.conv2d(
            input=tmp,
            num_filters=out_ch[i],
            filter_size=3,
            padding=1,
            param_attr=param if param_0 is None else param_0,
            act=None,  # LinearActivation
43
            use_cudnn=use_cudnn)
W
wanghaoshuang 已提交
44
        tmp = fluid.layers.batch_norm(
W
wanghaoshuang 已提交
45 46 47 48 49
            input=tmp,
            act=act,
            param_attr=param,
            bias_attr=bias,
            is_test=is_test)
50 51 52 53 54 55
    if pooling:
        tmp = fluid.layers.pool2d(
            input=tmp,
            pool_size=2,
            pool_type='max',
            pool_stride=2,
56
            use_cudnn=use_cudnn,
57
            ceil_mode=True)
W
wanghaoshuang 已提交
58 59 60 61

    return tmp


62 63 64 65 66
def ocr_convs(input,
              regularizer=None,
              gradient_clip=None,
              is_test=False,
              use_cudnn=False):
W
wanghaoshuang 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79
    b = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.0))
    w0 = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.0005))
    w1 = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.01))
    tmp = input
W
wanghaoshuang 已提交
80
    tmp = conv_bn_pool(
81 82 83 84 85 86 87
        tmp,
        2, [16, 16],
        param=w1,
        bias=b,
        param_0=w0,
        is_test=is_test,
        use_cudnn=use_cudnn)
88

89
    tmp = conv_bn_pool(
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        tmp,
        2, [32, 32],
        param=w1,
        bias=b,
        is_test=is_test,
        use_cudnn=use_cudnn)
    tmp = conv_bn_pool(
        tmp,
        2, [64, 64],
        param=w1,
        bias=b,
        is_test=is_test,
        use_cudnn=use_cudnn)
    tmp = conv_bn_pool(
        tmp,
        2, [128, 128],
        param=w1,
        bias=b,
        is_test=is_test,
        pooling=False,
        use_cudnn=use_cudnn)
W
wanghaoshuang 已提交
111 112 113 114 115 116 117
    return tmp


def encoder_net(images,
                num_classes,
                rnn_hidden_size=200,
                regularizer=None,
W
wanghaoshuang 已提交
118
                gradient_clip=None,
119 120
                is_test=False,
                use_cudnn=False):
W
wanghaoshuang 已提交
121
    conv_features = ocr_convs(
W
wanghaoshuang 已提交
122 123 124
        images,
        regularizer=regularizer,
        gradient_clip=gradient_clip,
125 126
        is_test=is_test,
        use_cudnn=use_cudnn)
W
wanghaoshuang 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    sliced_feature = fluid.layers.im2sequence(
        input=conv_features,
        stride=[1, 1],
        filter_size=[conv_features.shape[2], 1])

    para_attr = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.02))
    bias_attr = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.02),
        learning_rate=2.0)
    bias_attr_nobias = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.02))

    fc_1 = fluid.layers.fc(input=sliced_feature,
                           size=rnn_hidden_size * 3,
                           param_attr=para_attr,
                           bias_attr=bias_attr_nobias)
    fc_2 = fluid.layers.fc(input=sliced_feature,
                           size=rnn_hidden_size * 3,
                           param_attr=para_attr,
                           bias_attr=bias_attr_nobias)

    gru_forward = fluid.layers.dynamic_gru(
        input=fc_1,
        size=rnn_hidden_size,
        param_attr=para_attr,
        bias_attr=bias_attr,
        candidate_activation='relu')
    gru_backward = fluid.layers.dynamic_gru(
        input=fc_2,
        size=rnn_hidden_size,
        is_reverse=True,
        param_attr=para_attr,
        bias_attr=bias_attr,
        candidate_activation='relu')

    w_attr = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.02))
    b_attr = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.0))

    fc_out = fluid.layers.fc(input=[gru_forward, gru_backward],
                             size=num_classes + 1,
                             param_attr=w_attr,
                             bias_attr=b_attr)
W
wanghaoshuang 已提交
182

W
wanghaoshuang 已提交
183 184 185
    return fc_out


186
def ctc_train_net(args, data_shape, num_classes):
W
whs 已提交
187 188 189
    L2_RATE = args.l2decay
    LR = args.lr
    MOMENTUM = args.momentum
190
    learning_rate_decay = None
191
    regularizer = fluid.regularizer.L2Decay(L2_RATE)
W
wanghaoshuang 已提交
192

193 194 195
    images = fluid.data(name='pixel', shape=[None] + data_shape, dtype='float32')
    label = fluid.data(
        name='label', shape=[None, 1], dtype='int32', lod_level=1)
196 197 198 199 200
    fc_out = encoder_net(
        images,
        num_classes,
        regularizer=regularizer,
        use_cudnn=True if args.use_gpu else False)
201 202 203 204 205
    cost = fluid.layers.warpctc(
        input=fc_out, label=label, blank=num_classes, norm_by_times=True)
    sum_cost = fluid.layers.reduce_sum(cost)
    decoded_out = fluid.layers.ctc_greedy_decoder(
        input=fc_out, blank=num_classes)
W
wanghaoshuang 已提交
206 207 208
    casted_label = fluid.layers.cast(x=label, dtype='int64')
    error_evaluator = fluid.evaluator.EditDistance(
        input=decoded_out, label=casted_label)
W
wanghaoshuang 已提交
209
    inference_program = fluid.default_main_program().clone(for_test=True)
210 211
    if learning_rate_decay == "piecewise_decay":
        learning_rate = fluid.layers.piecewise_decay([
212
            args.total_step // 4, args.total_step // 2, args.total_step * 3 // 4
213 214 215 216 217 218
        ], [LR, LR * 0.1, LR * 0.01, LR * 0.001])
    else:
        learning_rate = LR

    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate, momentum=MOMENTUM)
W
wanghaoshuang 已提交
219
    _, params_grads = optimizer.minimize(sum_cost)
220 221 222 223 224 225
    model_average = None
    if args.average_window > 0:
        model_average = fluid.optimizer.ModelAverage(
            args.average_window,
            min_average_window=args.min_average_window,
            max_average_window=args.max_average_window)
226
    return sum_cost, error_evaluator, inference_program, model_average
W
wanghaoshuang 已提交
227 228


W
whs 已提交
229
def ctc_infer(images, num_classes, use_cudnn=True):
230
    fc_out = encoder_net(images, num_classes, is_test=True, use_cudnn=use_cudnn)
W
wanghaoshuang 已提交
231 232 233
    return fluid.layers.ctc_greedy_decoder(input=fc_out, blank=num_classes)


W
whs 已提交
234
def ctc_eval(data_shape, num_classes, use_cudnn=True):
235 236 237
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(
        name='label', shape=[1], dtype='int32', lod_level=1)
238
    fc_out = encoder_net(images, num_classes, is_test=True, use_cudnn=use_cudnn)
W
wanghaoshuang 已提交
239 240 241 242 243 244 245 246
    decoded_out = fluid.layers.ctc_greedy_decoder(
        input=fc_out, blank=num_classes)

    casted_label = fluid.layers.cast(x=label, dtype='int64')
    error_evaluator = fluid.evaluator.EditDistance(
        input=decoded_out, label=casted_label)

    cost = fluid.layers.warpctc(
247
        input=fc_out, label=label, blank=num_classes, norm_by_times=True)
W
wanghaoshuang 已提交
248 249

    return error_evaluator, cost