run_ernie.py 6.2 KB
Newer Older
N
Noel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial

import paddle
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.transformers import ErnieTokenizer, ErniePretrainedModel, ErnieForTokenClassification
from paddlenlp.metrics import ChunkEvaluator


def parse_decodes(ds, decodes, lens):
    decodes = [x for batch in decodes for x in batch]
    lens = [x for batch in lens for x in batch]
    id_label = dict(zip(ds.label_vocab.values(), ds.label_vocab.keys()))

    outputs = []
    for idx, end in enumerate(lens):
        sent = ds.word_ids[idx][:end]
        tags = [id_label[x] for x in decodes[idx][1:end]]
        sent_out = []
        tags_out = []
        words = ""
        for s, t in zip(sent, tags):
            if t.endswith('-B') or t == 'O':
                if len(words):
                    sent_out.append(words)
                tags_out.append(t.split('-')[0])
                words = s
            else:
                words += s
        if len(sent_out) < len(tags_out):
            sent_out.append(words)
        outputs.append(''.join(
            [str((s, t)) for s, t in zip(sent_out, tags_out)]))
    return outputs


@paddle.no_grad()
def evaluate(model, metric, data_loader):
    model.eval()
    metric.reset()
    for input_ids, seg_ids, lens, labels in data_loader:
        logits = model(input_ids, seg_ids)
        preds = paddle.argmax(logits, axis=-1)
        n_infer, n_label, n_correct = metric.compute(None, lens, preds, labels)
        metric.update(n_infer.numpy(), n_label.numpy(), n_correct.numpy())
        precision, recall, f1_score = metric.accumulate()
    print("eval precision: %f - recall: %f - f1: %f" %
          (precision, recall, f1_score))


def predict(model, data_loader, ds):
    pred_list = []
    len_list = []
    for input_ids, seg_ids, lens, labels in data_loader:
        logits = model(input_ids, seg_ids)
        pred = paddle.argmax(logits, axis=-1)
        pred_list.append(pred.numpy())
        len_list.append(lens.numpy())
    preds = parse_decodes(ds, pred_list, len_list)
    print('\n'.join(preds[:10]))


def convert_example(example, tokenizer, label_vocab):
    tokens, labels = example
    tokens = [tokenizer.cls_token] + tokens + [tokenizer.sep_token]
    input_ids = tokenizer.convert_tokens_to_ids(tokens)
    segment_ids = [0] * len(tokens)
    lens = len(input_ids)
    labels = ['O'] + labels + ['O']
    labels = [label_vocab[x] for x in labels]
    return input_ids, segment_ids, lens, labels


def load_dict(dict_path):
    vocab = {}
    for line in open(dict_path, 'r', encoding='utf-8'):
        value, key = line.strip('\n').split('\t')
        vocab[key] = int(value)
    return vocab


class ExpressDataset(paddle.io.Dataset):
    def __init__(self, data_path):
        self.word_vocab = load_dict('./conf/word.dic')
        self.label_vocab = load_dict('./conf/tag.dic')
        self.word_ids = []
        self.label_ids = []
        with open(data_path, 'r', encoding='utf-8') as fp:
            next(fp)
            for line in fp.readlines():
                words, labels = line.strip('\n').split('\t')
                words = words.split('\002')
                labels = labels.split('\002')
                self.word_ids.append(words)
                self.label_ids.append(labels)
        self.word_num = max(self.word_vocab.values()) + 1
        self.label_num = max(self.label_vocab.values()) + 1

    def __len__(self):
        return len(self.word_ids)

    def __getitem__(self, index):
        return self.word_ids[index], self.label_ids[index]


if __name__ == '__main__':
    paddle.set_device('gpu')

    train_ds = ExpressDataset('./data/train.txt')
    dev_ds = ExpressDataset('./data/dev.txt')
    test_ds = ExpressDataset('./data/test.txt')

    tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')
    trans_func = partial(
        convert_example, tokenizer=tokenizer, label_vocab=train_ds.label_vocab)

    ignore_label = -1
    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]),
        Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]),
        Stack(),
        Pad(axis=0, pad_val=ignore_label)
    ): fn(list(map(trans_func, samples)))

    train_loader = paddle.io.DataLoader(
        dataset=train_ds,
        batch_size=200,
        shuffle=True,
        return_list=True,
        collate_fn=batchify_fn)
    dev_loader = paddle.io.DataLoader(
        dataset=dev_ds,
        batch_size=200,
        return_list=True,
        collate_fn=batchify_fn)
    test_loader = paddle.io.DataLoader(
        dataset=test_ds,
        batch_size=200,
        return_list=True,
        collate_fn=batchify_fn)

    model = ErnieForTokenClassification.from_pretrained(
        "ernie-1.0", num_classes=train_ds.label_num)

K
kinghuin 已提交
157
    metric = ChunkEvaluator(label_list=train_ds.label_vocab.keys(), suffix=True)
N
Noel 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    loss_fn = paddle.nn.loss.CrossEntropyLoss(ignore_index=ignore_label)
    optimizer = paddle.optimizer.AdamW(
        learning_rate=2e-5, parameters=model.parameters())

    step = 0
    for epoch in range(10):
        model.train()
        for idx, (input_ids, segment_ids, length,
                  labels) in enumerate(train_loader):
            logits = model(input_ids, segment_ids).reshape(
                [-1, train_ds.label_num])
            loss = paddle.mean(loss_fn(logits, labels.reshape([-1])))
            loss.backward()
            optimizer.step()
            optimizer.clear_gradients()
            step += 1
            print("epoch:%d - step:%d - loss: %f" % (epoch, step, loss))
        evaluate(model, metric, dev_loader)

        paddle.save(model.state_dict(),
                    './ernie_result/model_%d.pdparams' % step)

    pred = predict(model, test_loader, test_ds)