paddlecv.py 2.3 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import importlib
import argparse

__dir__ = os.path.dirname(__file__)

sys.path.insert(0, os.path.join(__dir__, ''))

import cv2
import logging
import numpy as np
from pathlib import Path

ppcv = importlib.import_module('.', 'ppcv')
tools = importlib.import_module('.', 'tools')
tests = importlib.import_module('.', 'tests')

VERSION = '0.1.0'

import yaml
from ppcv.model_zoo.model_zoo import TASK_DICT, list_model, get_config_file
from ppcv.engine.pipeline import Pipeline
from ppcv.utils.logger import setup_logger

logger = setup_logger()


class PaddleCV(object):
    def __init__(self,
                 task_name=None,
                 config_path=None,
47
                 output_dir='output',
W
wangguanzhong 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
                 run_mode='paddle',
                 device='CPU'):

        if task_name is not None:
            assert task_name in TASK_DICT, f"task_name must be one of {list(TASK_DICT.keys())} but got {task_name}"
            config_path = get_config_file(task_name)
        else:
            assert config_path is not None, "task_name and config_path can not be None at the same time!!!"

        self.cfg_dict = dict(
            config=config_path,
            output_dir=output_dir,
            run_mode=run_mode,
            device=device)
        cfg = argparse.Namespace(**self.cfg_dict)
        self.pipeline = Pipeline(cfg)

    @classmethod
    def list_all_supported_tasks(self, ):
        logger.info(
            f"Tasks and recommanded configs that paddlecv supports are : ")
        buffer = yaml.dump(TASK_DICT)
        print(buffer)
        return

    @classmethod
    def list_all_supported_models(self, filters=[]):
        list_model(filters)
        return

    def __call__(self, input):
        res = self.pipeline.run(input)
        return res