reader.py 3.3 KB
Newer Older
H
Hongyu Liu 已提交
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
H
Hongyu Liu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
H
Hongyu Liu 已提交
14

H
Hongyu Liu 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import os
import sys
import numpy as np

Py3 = sys.version_info[0] == 3


def _read_words(filename):
    data = []
    with open(filename, "r") as f:
        if Py3:
            return f.read().replace("\n", "<eos>").split()
        else:
            return f.read().decode("utf-8").replace("\n", "<eos>").split()


def _build_vocab(filename):
    data = _read_words(filename)

    counter = collections.Counter(data)
    count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))

    words, _ = list(zip(*count_pairs))

    print("vocab word num", len(words))
    word_to_id = dict(zip(words, range(len(words))))

    return word_to_id


def _file_to_word_ids(filename, word_to_id):
    data = _read_words(filename)
    return [word_to_id[word] for word in data if word in word_to_id]


def ptb_raw_data(data_path=None):
    """Load PTB raw data from data directory "data_path".

  Reads PTB text files, converts strings to integer ids,
  and performs mini-batching of the inputs.

  The PTB dataset comes from Tomas Mikolov's webpage:

  http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.

  Returns:
    tuple (train_data, valid_data, test_data, vocabulary)
    where each of the data objects can be passed to PTBIterator.
  """

    train_path = os.path.join(data_path, "ptb.train.txt")
    #train_path = os.path.join(data_path, "train.fake")
    valid_path = os.path.join(data_path, "ptb.valid.txt")
    test_path = os.path.join(data_path, "ptb.test.txt")

    word_to_id = _build_vocab(train_path)
    train_data = _file_to_word_ids(train_path, word_to_id)
    valid_data = _file_to_word_ids(valid_path, word_to_id)
    test_data = _file_to_word_ids(test_path, word_to_id)
    vocabulary = len(word_to_id)
    return train_data, valid_data, test_data, vocabulary


def get_data_iter(raw_data, batch_size, num_steps):
    data_len = len(raw_data)
    raw_data = np.asarray(raw_data, dtype="int64")

    #print( "raw", raw_data[:20] )

    batch_len = data_len // batch_size

    data = raw_data[0:batch_size * batch_len].reshape((batch_size, batch_len))

    #h = data.reshape( (-1))
    #print( "h", h[:20])

    epoch_size = (batch_len - 1) // num_steps
    for i in range(epoch_size):
        start = i * num_steps
        #print( i * num_steps )
        x = np.copy(data[:, i * num_steps:(i + 1) * num_steps])
        y = np.copy(data[:, i * num_steps + 1:(i + 1) * num_steps + 1])

        yield (x, y)