dec_att.py 2.4 KB
Newer Older
M
mapingshuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

M
mapingshuo 已提交
15
from . import basic_config
16 17 18 19 20 21 22

def decatt_glove():
    """
    use config 'decAtt_glove' in the paper 'Neural Paraphrase Identification of Questions with Noisy Pretraining'
    """
    config = basic_config.config()
    config.learning_rate = 0.05
M
mapingshuo 已提交
23
    config.save_dirname = "model_dir"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    config.use_pretrained_word_embedding = True
    config.dict_dim = 40000 # approx_vocab_size
    config.metric_type = ['accuracy', 'accuracy_with_threshold']
    config.optimizer_type = 'sgd'
    config.lr_decay = 1
    config.use_lod_tensor = False
    config.embedding_norm = False
    config.OOV_fill = 'uniform'
    config.duplicate_data = False
    
    # net config
    config.emb_dim = 300
    config.proj_emb_dim = 200 #TODO: has project?
    config.num_units = [400, 200]
    config.word_embedding_trainable = True
    config.droprate = 0.1
    config.share_wight_btw_seq =  True
    config.class_dim = 2

    return config

M
mapingshuo 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
def decatt_word():
    """
    use config 'decAtt_glove' in the paper 'Neural Paraphrase Identification of Questions with Noisy Pretraining'
    """
    config = basic_config.config()
    config.learning_rate = 0.05
    config.save_dirname = "model_dir"
    config.use_pretrained_word_embedding = False
    config.dict_dim = 40000 # approx_vocab_size
    config.metric_type = ['accuracy', 'accuracy_with_threshold']
    config.optimizer_type = 'sgd'
    config.lr_decay = 1
    config.use_lod_tensor = False
    config.embedding_norm = False
    config.OOV_fill = 'uniform'
    config.duplicate_data = False

    # net config
    config.emb_dim = 300
    config.proj_emb_dim = 200 #TODO: has project?
    config.num_units = [400, 200]
    config.word_embedding_trainable = True
    config.droprate = 0.1
    config.share_wight_btw_seq =  True
    config.class_dim = 2

    return config