run_squad.py 19.7 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on SQuAD."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Y
Yibing Liu 已提交
20 21 22 23
import sys
reload(sys)
sys.setdefaultencoding('utf8')

Y
Yibing Liu 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
import argparse
import collections
import multiprocessing
import os
import time
import numpy as np
import paddle
import paddle.fluid as fluid

from reader.squad import DataProcessor, write_predictions
from model.bert import BertConfig, BertModel
from utils.args import ArgumentGroup, print_arguments, check_cuda
from optimization import optimization
from utils.init import init_pretraining_params, init_checkpoint

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path",         str,  None,           "Path to the json file for bert model config.")
model_g.add_arg("init_checkpoint",          str,  None,           "Init checkpoint to resume training from.")
model_g.add_arg("init_pretraining_params",  str,  None,
                "Init pre-training params which preforms fine-tuning from. If the "
                 "arg 'init_checkpoint' has been set, this argument wouldn't be valid.")
model_g.add_arg("checkpoints",              str,  "checkpoints",  "Path to save checkpoints.")

train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch",             int,    3,      "Number of epoches for fine-tuning.")
train_g.add_arg("learning_rate",     float,  5e-5,   "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler",      str,    "linear_warmup_decay",
                "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay",      float,  0.01,   "Weight decay rate for L2 regularizer.")
train_g.add_arg("warmup_proportion", float,  0.1,
                "Proportion of training steps to perform linear learning rate warmup for.")
train_g.add_arg("save_steps",        int,    1000,   "The steps interval to save checkpoints.")
train_g.add_arg("use_fp16",          bool,   False,  "Whether to use fp16 mixed precision training.")
59 60
train_g.add_arg("use_dynamic_loss_scaling",    bool,   True,   "Whether to use dynamic loss scaling in mixed precision training.")
train_g.add_arg("init_loss_scaling",           float,  2**32,
Y
Yibing Liu 已提交
61
                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")
62 63 64 65 66 67 68
train_g.add_arg("incr_every_n_steps",          int,    1000,   "Increases loss scaling every n consecutive.")
train_g.add_arg("decr_every_n_nan_or_inf",     int,    2,
                "Decreases loss scaling every n accumulated steps with nan or inf gradients.")
train_g.add_arg("incr_ratio",                  float,  2.0,
                "The multiplier to use when increasing the loss scaling.")
train_g.add_arg("decr_ratio",                  float,  0.8,
                "The less-than-one-multiplier to use when decreasing.")
Y
Yibing Liu 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

log_g = ArgumentGroup(parser, "logging", "logging related.")
log_g.add_arg("skip_steps",          int,    10,    "The steps interval to print loss.")
log_g.add_arg("verbose",             bool,   False, "Whether to output verbose log.")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("train_file",                str,   None,  "SQuAD json for training. E.g., train-v1.1.json.")
data_g.add_arg("predict_file",              str,   None,  "SQuAD json for predictions. E.g. dev-v1.1.json or test-v1.1.json.")
data_g.add_arg("vocab_path",                str,   None,  "Vocabulary path.")
data_g.add_arg("version_2_with_negative",   bool,  False,
               "If true, the SQuAD examples contain some that do not have an answer. If using squad v2.0, it should be set true.")
data_g.add_arg("max_seq_len",               int,   512,   "Number of words of the longest seqence.")
data_g.add_arg("max_query_length",          int,   64,    "Max query length.")
data_g.add_arg("max_answer_length",         int,   30,    "Max answer length.")
data_g.add_arg("batch_size",                int,   12,    "Total examples' number in batch for training. see also --in_tokens.")
data_g.add_arg("in_tokens",                 bool,  False,
               "If set, the batch size will be the maximum number of tokens in one batch. "
               "Otherwise, it will be the maximum number of examples in one batch.")
data_g.add_arg("do_lower_case",             bool,  True,
               "Whether to lower case the input text. Should be True for uncased models and False for cased models.")
data_g.add_arg("doc_stride",                int,   128,
               "When splitting up a long document into chunks, how much stride to take between chunks.")
data_g.add_arg("n_best_size",               int,   20,
               "The total number of n-best predictions to generate in the nbest_predictions.json output file.")
data_g.add_arg("null_score_diff_threshold", float, 0.0,
               "If null_score - best_non_null is greater than the threshold predict null.")
data_g.add_arg("random_seed",               int,   0,      "Random seed.")

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("use_cuda",                     bool,   True,  "If set, use GPU for training.")
run_type_g.add_arg("use_fast_executor",            bool,   False, "If set, use fast parallel executor (in experiment).")
run_type_g.add_arg("num_iteration_per_drop_scope", int,    1,     "Ihe iteration intervals to clean up temporary variables.")
run_type_g.add_arg("do_train",                     bool,   True,  "Whether to perform training.")
run_type_g.add_arg("do_predict",                   bool,   True,  "Whether to perform prediction.")

args = parser.parse_args()
# yapf: enable.

107
def create_model(bert_config, is_training=False):
Y
Yibing Liu 已提交
108
    if is_training:
109 110 111
        input_fields = {
            'names': ['src_ids', 'pos_ids', 'sent_ids', 'input_mask', 'start_positions', 'end_positions'],
            'shapes': [[-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1],
Y
Yibing Liu 已提交
112 113
                    [-1, args.max_seq_len, 1],
                    [-1, args.max_seq_len, 1], [-1, 1], [-1, 1]],
114
            'dtypes': [
Y
Yibing Liu 已提交
115
                'int64', 'int64', 'int64', 'float32', 'int64', 'int64'],
116 117
            'lod_levels': [0, 0, 0, 0, 0, 0],
        }
Y
Yibing Liu 已提交
118
    else:
119 120 121
        input_fields = {
            'names': ['src_ids', 'pos_ids', 'sent_ids', 'input_mask', 'unique_id'],
            'shapes': [[-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1],
Y
Yibing Liu 已提交
122 123
                    [-1, args.max_seq_len, 1],
                    [-1, args.max_seq_len, 1], [-1, 1]],
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
            'dtypes': [
                'int64', 'int64', 'int64', 'float32', 'int64'],
            'lod_levels': [0, 0, 0, 0, 0],
        }

    inputs = [fluid.layers.data(name=input_fields['names'][i],
                      shape=input_fields['shapes'][i],
                      dtype=input_fields['dtypes'][i],
                      lod_level=input_fields['lod_levels'][i]) for i in range(len(input_fields['names']))]

    pyreader = fluid.io.PyReader(feed_list=inputs, capacity=50, iterable=False)

    if is_training:
        (src_ids, pos_ids, sent_ids, input_mask, start_positions, end_positions) = inputs
    else:
        (src_ids, pos_ids, sent_ids, input_mask, unique_id) = inputs
Y
Yibing Liu 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

    bert = BertModel(
        src_ids=src_ids,
        position_ids=pos_ids,
        sentence_ids=sent_ids,
        input_mask=input_mask,
        config=bert_config,
        use_fp16=args.use_fp16)

    enc_out = bert.get_sequence_output()

    logits = fluid.layers.fc(
        input=enc_out,
        size=2,
        num_flatten_dims=2,
        param_attr=fluid.ParamAttr(
            name="cls_squad_out_w",
            initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
        bias_attr=fluid.ParamAttr(
            name="cls_squad_out_b", initializer=fluid.initializer.Constant(0.)))

    logits = fluid.layers.transpose(x=logits, perm=[2, 0, 1])
    start_logits, end_logits = fluid.layers.unstack(x=logits, axis=0)

    batch_ones = fluid.layers.fill_constant_batch_size_like(
        input=start_logits, dtype='int64', shape=[1], value=1)
    num_seqs = fluid.layers.reduce_sum(input=batch_ones)

    if is_training:

        def compute_loss(logits, positions):
            loss = fluid.layers.softmax_with_cross_entropy(
                logits=logits, label=positions)
            loss = fluid.layers.mean(x=loss)
            return loss

        start_loss = compute_loss(start_logits, start_positions)
        end_loss = compute_loss(end_logits, end_positions)
        total_loss = (start_loss + end_loss) / 2.0
        return pyreader, total_loss, num_seqs
    else:
        return pyreader, unique_id, start_logits, end_logits, num_seqs


RawResult = collections.namedtuple("RawResult",
                                   ["unique_id", "start_logits", "end_logits"])


def predict(test_exe, test_program, test_pyreader, fetch_list, processor):
    if not os.path.exists(args.checkpoints):
        os.makedirs(args.checkpoints)
    output_prediction_file = os.path.join(args.checkpoints, "predictions.json")
    output_nbest_file = os.path.join(args.checkpoints, "nbest_predictions.json")
    output_null_log_odds_file = os.path.join(args.checkpoints, "null_odds.json")

    test_pyreader.start()
    all_results = []
    time_begin = time.time()
    while True:
        try:
            np_unique_ids, np_start_logits, np_end_logits, np_num_seqs = test_exe.run(
                fetch_list=fetch_list, program=test_program)
            for idx in range(np_unique_ids.shape[0]):
                if len(all_results) % 1000 == 0:
                    print("Processing example: %d" % len(all_results))
                unique_id = int(np_unique_ids[idx])
                start_logits = [float(x) for x in np_start_logits[idx].flat]
                end_logits = [float(x) for x in np_end_logits[idx].flat]
                all_results.append(
                    RawResult(
                        unique_id=unique_id,
                        start_logits=start_logits,
                        end_logits=end_logits))
        except fluid.core.EOFException:
            test_pyreader.reset()
            break
    time_end = time.time()

    features = processor.get_features(
        processor.predict_examples, is_training=False)
    write_predictions(processor.predict_examples, features, all_results,
                      args.n_best_size, args.max_answer_length,
                      args.do_lower_case, output_prediction_file,
                      output_nbest_file, output_null_log_odds_file,
                      args.version_2_with_negative,
                      args.null_score_diff_threshold, args.verbose)


def train(args):
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    if not (args.do_train or args.do_predict):
        raise ValueError("For args `do_train` and `do_predict`, at "
                         "least one of them must be True.")

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

    processor = DataProcessor(
        vocab_path=args.vocab_path,
        do_lower_case=args.do_lower_case,
        max_seq_length=args.max_seq_len,
        in_tokens=args.in_tokens,
        doc_stride=args.doc_stride,
        max_query_length=args.max_query_length)

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        train_data_generator = processor.data_generator(
            data_path=args.train_file,
            batch_size=args.batch_size,
            phase='train',
            shuffle=True,
            dev_count=dev_count,
            version_2_with_negative=args.version_2_with_negative,
            epoch=args.epoch)

        num_train_examples = processor.get_num_examples(phase='train')
        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size) // dev_count
        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d" % dev_count)
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, loss, num_seqs = create_model(
                    bert_config=bert_config,
                    is_training=True)

286
                scheduled_lr, loss_scaling = optimization(
Y
Yibing Liu 已提交
287 288 289 290 291 292 293 294 295
                    loss=loss,
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
296 297 298 299 300 301
                    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
                    init_loss_scaling=args.init_loss_scaling,
                    incr_every_n_steps=args.incr_every_n_steps,
                    decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
                    incr_ratio=args.incr_ratio,
                    decr_ratio=args.decr_ratio)
Y
Yibing Liu 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training:  %.3f - %.3f %s" %
                  (lower_mem, upper_mem, unit))

    if args.do_predict:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, unique_ids, start_logits, end_logits, num_seqs = create_model(
                    bert_config=bert_config,
                    is_training=False)

        test_prog = test_prog.clone(for_test=True)

    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            print(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_predict:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing prediction!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.use_experimental_executor = args.use_fast_executor
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

        train_compiled_program = fluid.CompiledProgram(train_program).with_data_parallel(
                 loss_name=loss.name, exec_strategy=exec_strategy)

362
        train_pyreader.decorate_batch_generator(train_data_generator, place)
Y
Yibing Liu 已提交
363 364 365 366 367 368 369 370 371

        train_pyreader.start()
        steps = 0
        total_cost, total_num_seqs = [], []
        time_begin = time.time()
        while steps < max_train_steps:
            try:
                steps += 1
                if steps % args.skip_steps == 0:
372 373
                    if args.use_fp16:
                        fetch_list = [loss.name, scheduled_lr.name, num_seqs.name, loss_scaling.name]
Y
Yibing Liu 已提交
374
                    else:
375
                        fetch_list = [loss.name, scheduled_lr.name, num_seqs.name]
Y
Yibing Liu 已提交
376 377 378 379 380 381
                else:
                    fetch_list = []

                outputs = exe.run(train_compiled_program, fetch_list=fetch_list)

                if steps % args.skip_steps == 0:
382 383
                    if args.use_fp16:
                        np_loss, np_lr, np_num_seqs, np_scaling = outputs
Y
Yibing Liu 已提交
384 385 386 387 388 389 390 391
                    else:
                        np_loss, np_lr, np_num_seqs = outputs
                    total_cost.extend(np_loss * np_num_seqs)
                    total_num_seqs.extend(np_num_seqs)

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
392 393 394
                        verbose += "learning rate: %f " % np_lr[0]
                        if args.use_fp16:
                            verbose += ", loss scaling: %f" % np_scaling[0]
Y
Yibing Liu 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
                        print(verbose)

                    time_end = time.time()
                    used_time = time_end - time_begin
                    current_example, epoch = processor.get_train_progress()

                    print("epoch: %d, progress: %d/%d, step: %d, loss: %f, "
                          "speed: %f steps/s" %
                          (epoch, current_example, num_train_examples, steps,
                           np.sum(total_cost) / np.sum(total_num_seqs),
                           args.skip_steps / used_time))
                    total_cost, total_num_seqs = [], []
                    time_begin = time.time()

                if steps % args.save_steps == 0 or steps == max_train_steps:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)
            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints,
                                         "step_" + str(steps) + "_final")
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    if args.do_predict:
421
        test_pyreader.decorate_batch_generator(
Y
Yibing Liu 已提交
422 423 424 425 426 427
            processor.data_generator(
                data_path=args.predict_file,
                batch_size=args.batch_size,
                phase='predict',
                shuffle=False,
                dev_count=1,
428
                epoch=1), place)
Y
Yibing Liu 已提交
429 430 431 432 433 434 435 436 437 438

        predict(exe, test_prog, test_pyreader, [
            unique_ids.name, start_logits.name, end_logits.name, num_seqs.name
        ], processor)


if __name__ == '__main__':
    print_arguments(args)
    check_cuda(args.use_cuda)
    train(args)