infer.py 2.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
import logging
import numpy as np
import pickle
import os
import paddle
import paddle.fluid as fluid

from args import parse_args
from criteo_reader import CriteoDataset
import network_conf
11
import utils
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger('fluid')
logger.setLevel(logging.INFO)


def infer():
    args = parse_args()
    print(args)

    if args.use_gpu == 1:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()
    inference_scope = fluid.Scope()

    test_files = [
        args.test_data_dir + '/' + x for x in os.listdir(args.test_data_dir)
    ]
    criteo_dataset = CriteoDataset()
    test_reader = paddle.batch(
        criteo_dataset.test(test_files), batch_size=args.batch_size)

    startup_program = fluid.framework.Program()
    test_program = fluid.framework.Program()
    cur_model_path = args.model_output_dir + '/epoch_' + args.test_epoch

    with fluid.scope_guard(inference_scope):
        with fluid.framework.program_guard(test_program, startup_program):
            loss, auc, data_list = eval('network_conf.' + args.model_name)(
                args.embedding_size, args.num_field, args.num_feat,
                args.layer_sizes_dnn, args.act, args.reg, args.layer_sizes_cin)

            exe = fluid.Executor(place)
            feeder = fluid.DataFeeder(feed_list=data_list, place=place)
            fluid.io.load_persistables(
                executor=exe,
                dirname=cur_model_path,
                main_program=fluid.default_main_program())

            auc_states_names = ['_generated_var_2', '_generated_var_3']
            for name in auc_states_names:
                param = inference_scope.var(name).get_tensor()
                param_array = np.zeros(param._get_dims()).astype("int64")
                param.set(param_array, place)

            loss_all = 0
            num_ins = 0
            for batch_id, data_test in enumerate(test_reader()):
                loss_val, auc_val = exe.run(test_program,
                                            feed=feeder.feed(data_test),
                                            fetch_list=[loss.name, auc.name])

                num_ins += len(data_test)
                loss_all += loss_val * len(data_test)
                logger.info('TEST --> batch: {} loss: {} auc_val: {}'.format(
                    batch_id, loss_all / num_ins, auc_val))

            print(
                'The last log info is the total Logloss and AUC for all test data. '
            )


if __name__ == '__main__':
76
    utils.check_version()
77
    infer()