train.py 9.2 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
import random

import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor

import reader

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
sys.path.append('..')
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

from args import *
import lm_model
import logging
import pickle

SEED = 123


def get_current_model_para(train_prog, train_exe):
    param_list = train_prog.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    vals = {}
    for p_name in param_name_list:
        p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
        vals[p_name] = p_array

    return vals


def save_para_npz(train_prog, train_exe):
    print("begin to save model to model_base")
    param_list = train_prog.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    vals = {}
    for p_name in param_name_list:
        p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
        vals[p_name] = p_array

    emb = vals["embedding_para"]
    print("begin to save model to model_base")
    np.savez("mode_base", **vals)


def train():
    args = parse_args()
    model_type = args.model_type
    logger = logging.getLogger("lm")
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    if args.enable_ce:
        fluid.default_startup_program().random_seed = SEED
    if args.log_path:
        file_handler = logging.FileHandler(args.log_path)
        file_handler.setLevel(logging.INFO)
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)
    else:
        console_handler = logging.StreamHandler()
        console_handler.setLevel(logging.INFO)
        console_handler.setFormatter(formatter)
        logger.addHandler(console_handler)

    logger.info('Running with args : {}'.format(args))

    vocab_size = 10000
    if model_type == "test":
        num_layers = 1
        batch_size = 2
        hidden_size = 10
        num_steps = 3
        init_scale = 0.1
        max_grad_norm = 5.0
        epoch_start_decay = 1
        max_epoch = 1
        dropout = 0.0
        lr_decay = 0.5
        base_learning_rate = 1.0
    elif model_type == "small":
        num_layers = 2
        batch_size = 20
        hidden_size = 200
        num_steps = 20
        init_scale = 0.1
        max_grad_norm = 5.0
        epoch_start_decay = 4
        max_epoch = 13
        dropout = 0.0
        lr_decay = 0.5
        base_learning_rate = 1.0
    elif model_type == "medium":
        num_layers = 2
        batch_size = 20
        hidden_size = 650
        num_steps = 35
        init_scale = 0.05
        max_grad_norm = 5.0
        epoch_start_decay = 6
        max_epoch = 39
        dropout = 0.5
        lr_decay = 0.8
        base_learning_rate = 1.0
    elif model_type == "large":
        num_layers = 2
        batch_size = 20
        hidden_size = 1500
        num_steps = 35
        init_scale = 0.04
        max_grad_norm = 10.0
        epoch_start_decay = 14
        max_epoch = 55
        dropout = 0.65
        lr_decay = 1.0 / 1.15
        base_learning_rate = 1.0
    else:
        print("model type not support")
        return

    # Training process
    loss, last_hidden, last_cell, feed_order = lm_model.lm_model(
        hidden_size,
        vocab_size,
        batch_size,
        num_layers=num_layers,
        num_steps=num_steps,
        init_scale=init_scale,
        dropout=dropout)
    # clone from default main program and use it as the validation program
    main_program = fluid.default_main_program()
    inference_program = fluid.default_main_program().clone(for_test=True)

    fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByGlobalNorm(
        clip_norm=max_grad_norm))

    learning_rate = fluid.layers.create_global_var(
        name="learning_rate",
        shape=[1],
        value=1.0,
        dtype='float32',
        persistable=True)

    optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)

    optimizer.minimize(loss)

    place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
    exe = Executor(place)
    exe.run(framework.default_startup_program())

    data_path = args.data_path
    print("begin to load data")
    raw_data = reader.ptb_raw_data(data_path)
    print("finished load data")
    train_data, valid_data, test_data, _ = raw_data

    def prepare_input(batch, init_hidden, init_cell, epoch_id=0, with_lr=True):
        x, y = batch
        new_lr = base_learning_rate * (lr_decay**max(
            epoch_id + 1 - epoch_start_decay, 0.0))
        lr = np.ones((1), dtype='float32') * new_lr
        res = {}
        x = x.reshape((-1, num_steps, 1))
        y = y.reshape((-1, 1))

        res['x'] = x
        res['y'] = y
        res['init_hidden'] = init_hidden
        res['init_cell'] = init_cell
        if with_lr:
            res['learning_rate'] = lr

        return res

    def eval(data):
        # when eval the batch_size set to 1
        eval_data_iter = reader.get_data_iter(data, 1, num_steps)
        total_loss = 0.0
        iters = 0
        init_hidden = np.zeros((num_layers, 1, hidden_size), dtype='float32')
        init_cell = np.zeros((num_layers, 1, hidden_size), dtype='float32')
        for batch_id, batch in enumerate(eval_data_iter):
            input_data_feed = prepare_input(
                batch, init_hidden, init_cell, epoch_id, with_lr=False)
            fetch_outs = exe.run(
                inference_program,
                feed=input_data_feed,
                fetch_list=[loss.name, last_hidden.name, last_cell.name])

            cost_train = np.array(fetch_outs[0])
            init_hidden = np.array(fetch_outs[1])
            init_cell = np.array(fetch_outs[2])

            total_loss += cost_train
            iters += num_steps

        ppl = np.exp(total_loss / iters)
        return ppl

    # get train epoch size
    batch_len = len(train_data) // batch_size
    epoch_size = (batch_len - 1) // num_steps
    log_interval = epoch_size // 10
    total_time = 0.0
    for epoch_id in range(max_epoch):
        start_time = time.time()
        print("epoch id", epoch_id)
        train_data_iter = reader.get_data_iter(train_data, batch_size,
                                               num_steps)

        total_loss = 0

        init_hidden = None
        init_cell = None
        #debug_para(fluid.framework.default_main_program(), parallel_executor)
        total_loss = 0
        iters = 0
        init_hidden = np.zeros(
            (num_layers, batch_size, hidden_size), dtype='float32')
        init_cell = np.zeros(
            (num_layers, batch_size, hidden_size), dtype='float32')
        for batch_id, batch in enumerate(train_data_iter):
            input_data_feed = prepare_input(
                batch, init_hidden, init_cell, epoch_id=epoch_id)
            fetch_outs = exe.run(feed=input_data_feed,
                                 fetch_list=[
                                     loss.name, last_hidden.name,
                                     last_cell.name, 'learning_rate'
                                 ])

            cost_train = np.array(fetch_outs[0])
            init_hidden = np.array(fetch_outs[1])
            init_cell = np.array(fetch_outs[2])

            lr = np.array(fetch_outs[3])

            total_loss += cost_train
            iters += num_steps
            if batch_id > 0 and batch_id % log_interval == 0:
                ppl = np.exp(total_loss / iters)
                print("ppl ", batch_id, ppl[0], lr[0])

        ppl = np.exp(total_loss / iters)
        if epoch_id == 0 and ppl[0] > 1000:
            # for bad init, after first epoch, the loss is over 1000
            # no more need to continue
            return
        end_time = time.time()
        total_time += end_time - start_time
        print("train ppl", ppl[0])

        if epoch_id == max_epoch - 1 and args.enable_ce:
            print("lstm_language_model_duration\t%s" % (total_time / max_epoch))
            print("lstm_language_model_loss\t%s" % ppl[0])

        model_path = os.path.join("model_new/", str(epoch_id))
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        fluid.io.save_persistables(
            executor=exe, dirname=model_path, main_program=main_program)
        valid_ppl = eval(valid_data)
        print("valid ppl", valid_ppl[0])
    test_ppl = eval(test_data)
    print("test ppl", test_ppl[0])


if __name__ == '__main__':
    train()