test_and_evaluate.py 6.5 KB
Newer Older
Y
Yibing Liu 已提交
1
import os
Y
Yibing Liu 已提交
2
import six
Y
Yibing Liu 已提交
3 4 5 6 7 8 9
import numpy as np
import time
import argparse
import multiprocessing
import paddle
import paddle.fluid as fluid
import utils.reader as reader
Y
Yibing Liu 已提交
10 11 12 13 14 15
from utils.util import print_arguments, mkdir

try:
    import cPickle as pickle  #python 2
except ImportError as e:
    import pickle  #python 3
Y
Yibing Liu 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

from model import Net


#yapf: disable
def parse_args():
    parser = argparse.ArgumentParser("Test for DAM.")
    parser.add_argument(
        '--batch_size',
        type=int,
        default=256,
        help='Batch size for training. (default: %(default)d)')
    parser.add_argument(
        '--num_scan_data',
        type=int,
        default=2,
        help='Number of pass for training. (default: %(default)d)')
    parser.add_argument(
        '--learning_rate',
        type=float,
        default=1e-3,
        help='Learning rate used to train. (default: %(default)f)')
    parser.add_argument(
        '--data_path',
        type=str,
        default="data/ubuntu/data_small.pkl",
        help='Path to training data. (default: %(default)s)')
    parser.add_argument(
        '--save_path',
        type=str,
        default="./",
        help='Path to save score and result files. (default: %(default)s)')
    parser.add_argument(
        '--model_path',
        type=str,
        default="saved_models/step_1000",
        help='Path to load well-trained models. (default: %(default)s)')
    parser.add_argument(
        '--use_cuda',
        action='store_true',
        help='If set, use cuda for training.')
Y
Yibing Liu 已提交
57 58 59 60
    parser.add_argument(
        '--ext_eval',
        action='store_true',
        help='If set, use MAP, MRR ect for evaluation.')
Y
Yibing Liu 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    parser.add_argument(
        '--max_turn_num',
        type=int,
        default=9,
        help='Maximum number of utterances in context.')
    parser.add_argument(
        '--max_turn_len',
        type=int,
        default=50,
        help='Maximum length of setences in turns.')
    parser.add_argument(
        '--word_emb_init',
        type=str,
        default=None,
        help='Path to the initial word embedding.')
    parser.add_argument(
        '--vocab_size',
        type=int,
        default=434512,
        help='The size of vocabulary.')
    parser.add_argument(
        '--emb_size',
        type=int,
        default=200,
        help='The dimension of word embedding.')
    parser.add_argument(
        '--_EOS_',
        type=int,
        default=28270,
        help='The id for end of sentence in vocabulary.')
    parser.add_argument(
        '--stack_num',
        type=int,
        default=5,
        help='The number of stacked attentive modules in network.')
Y
Yibing Liu 已提交
96 97 98 99 100 101 102 103 104 105
    parser.add_argument(
        '--channel1_num',
        type=int,
        default=32,
        help="The channels' number of the 1st conv3d layer's output.")
    parser.add_argument(
        '--channel2_num',
        type=int,
        default=16,
        help="The channels' number of the 2nd conv3d layer's output.")
Y
Yibing Liu 已提交
106 107 108 109 110 111 112 113 114
    args = parser.parse_args()
    return args


#yapf: enable


def test(args):
    if not os.path.exists(args.save_path):
Y
Yibing Liu 已提交
115
        mkdir(args.save_path)
Y
Yibing Liu 已提交
116 117 118 119 120 121 122 123 124 125 126
    if not os.path.exists(args.model_path):
        raise ValueError("Invalid model init path %s" % args.model_path)
    # data data_config
    data_conf = {
        "batch_size": args.batch_size,
        "max_turn_num": args.max_turn_num,
        "max_turn_len": args.max_turn_len,
        "_EOS_": args._EOS_,
    }

    dam = Net(args.max_turn_num, args.max_turn_len, args.vocab_size,
Y
Yibing Liu 已提交
127 128
              args.emb_size, args.stack_num, args.channel1_num,
              args.channel2_num)
Y
Yibing Liu 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    loss, logits = dam.create_network()

    loss.persistable = True

    # gradient clipping
    fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue(
        max=1.0, min=-1.0))

    test_program = fluid.default_main_program().clone(for_test=True)

    optimizer = fluid.optimizer.Adam(
        learning_rate=fluid.layers.exponential_decay(
            learning_rate=args.learning_rate,
            decay_steps=400,
            decay_rate=0.9,
            staircase=True))
    optimizer.minimize(loss)

    # The fethced loss is wrong when mem opt is enabled 
    fluid.memory_optimize(fluid.default_main_program())

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = multiprocessing.cpu_count()

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    fluid.io.load_persistables(exe, args.model_path)

    test_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda, main_program=test_program)

    print("start loading data ...")
Y
Yibing Liu 已提交
166 167 168 169 170
    with open(args.data_path, 'rb') as f:
        if six.PY2:
            train_data, val_data, test_data = pickle.load(f)
        else:
            train_data, val_data, test_data = pickle.load(f, encoding="bytes")
Y
Yibing Liu 已提交
171 172
    print("finish loading data ...")

Y
Yibing Liu 已提交
173 174 175 176 177
    if args.ext_eval:
        import utils.douban_evaluation as eva
    else:
        import utils.evaluation as eva

Y
Yibing Liu 已提交
178 179 180 181 182 183 184 185 186 187 188 189
    test_batches = reader.build_batches(test_data, data_conf)

    test_batch_num = len(test_batches["response"])

    print("test batch num: %d" % test_batch_num)

    print("begin inference ...")
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))

    score_path = os.path.join(args.save_path, 'score.txt')
    score_file = open(score_path, 'w')

Y
Yibing Liu 已提交
190
    for it in six.moves.xrange(test_batch_num // dev_count):
Y
Yibing Liu 已提交
191
        feed_list = []
Y
Yibing Liu 已提交
192
        for dev in six.moves.xrange(dev_count):
Y
Yibing Liu 已提交
193 194 195 196 197 198 199 200 201
            index = it * dev_count + dev
            feed_dict = reader.make_one_batch_input(test_batches, index)
            feed_list.append(feed_dict)

        predicts = test_exe.run(feed=feed_list, fetch_list=[logits.name])

        scores = np.array(predicts[0])
        print("step = %d" % it)

Y
Yibing Liu 已提交
202
        for dev in six.moves.xrange(dev_count):
Y
Yibing Liu 已提交
203
            index = it * dev_count + dev
Y
Yibing Liu 已提交
204
            for i in six.moves.xrange(args.batch_size):
Y
Yibing Liu 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
                score_file.write(
                    str(scores[args.batch_size * dev + i][0]) + '\t' + str(
                        test_batches["label"][index][i]) + '\n')

    score_file.close()

    #write evaluation result
    result = eva.evaluate(score_path)
    result_file_path = os.path.join(args.save_path, 'result.txt')
    with open(result_file_path, 'w') as out_file:
        for p_at in result:
            out_file.write(str(p_at) + '\n')
    print('finish test')
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)
    test(args)