train.py 8.8 KB
Newer Older
W
whs 已提交
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
W
whs 已提交
4 5 6 7 8 9
import os
import random
import sys
import paddle
import argparse
import functools
W
whs 已提交
10
import time
W
whs 已提交
11 12
import numpy as np
from scipy.misc import imsave
W
whs 已提交
13
import paddle.fluid as fluid
W
whs 已提交
14
import paddle.fluid.profiler as profiler
W
whs 已提交
15 16
from paddle.fluid import core
import data_reader
W
whs 已提交
17
from utility import add_arguments, print_arguments, ImagePool
W
whs 已提交
18 19
from trainer import *

W
whs 已提交
20 21 22 23 24 25

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',        int,   1,          "Minibatch size.")
add_arg('epoch',             int,   2,        "The number of epoched to be trained.")
W
whs 已提交
26
add_arg('output',            str,   "./output_0", "The directory the model and the test result to be saved to.")
W
whs 已提交
27 28 29 30 31
add_arg('init_model',        str,   None,       "The init model file of directory.")
add_arg('save_checkpoints',  bool,  True,       "Whether to save checkpoints.")
add_arg('run_test',          bool,  True,       "Whether to run test.")
add_arg('use_gpu',           bool,  True,       "Whether to use GPU to train.")
add_arg('profile',           bool,  False,       "Whether to profile.")
W
whs 已提交
32
add_arg('run_ce',            bool,  False,       "Whether to run for model ce.")
W
whs 已提交
33 34 35 36
# yapf: enable


def train(args):
W
whs 已提交
37

W
whs 已提交
38
    max_images_num = data_reader.max_images_num()
W
whs 已提交
39 40 41 42 43 44 45
    shuffle=True
    if args.run_ce:
        np.random.seed(10)
        fluid.default_startup_program().random_seed = 90
        max_images_num = 1
        shuffle = False
    data_shape = [-1] + data_reader.image_shape()
W
whs 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    input_A = fluid.layers.data(
        name='input_A', shape=data_shape, dtype='float32')
    input_B = fluid.layers.data(
        name='input_B', shape=data_shape, dtype='float32')
    fake_pool_A = fluid.layers.data(
        name='fake_pool_A', shape=data_shape, dtype='float32')
    fake_pool_B = fluid.layers.data(
        name='fake_pool_B', shape=data_shape, dtype='float32')

    g_A_trainer = GATrainer(input_A, input_B)
    g_B_trainer = GBTrainer(input_A, input_B)
    d_A_trainer = DATrainer(input_A, fake_pool_A)
    d_B_trainer = DBTrainer(input_B, fake_pool_B)

    # prepare environment
    place = fluid.CPUPlace()
    if args.use_gpu:
        place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    A_pool = ImagePool()
    B_pool = ImagePool()
W
whs 已提交
69 70 71 72 73 74
    
    A_reader = paddle.batch(data_reader.a_reader(shuffle=shuffle), args.batch_size)()
    B_reader = paddle.batch(data_reader.b_reader(shuffle=shuffle), args.batch_size)()
    if not args.run_ce:
        A_test_reader = data_reader.a_test_reader()
        B_test_reader = data_reader.b_test_reader()
W
whs 已提交
75 76 77 78 79 80

    def test(epoch):
        out_path = args.output + "/test"
        if not os.path.exists(out_path):
            os.makedirs(out_path)
        i = 0
W
whs 已提交
81
        for data_A, data_B in zip(A_test_reader(), B_test_reader()):
W
whs 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            A_name = data_A[1]
            B_name = data_B[1]
            tensor_A = core.LoDTensor()
            tensor_B = core.LoDTensor()
            tensor_A.set(data_A[0], place)
            tensor_B.set(data_B[0], place)
            fake_A_temp, fake_B_temp, cyc_A_temp, cyc_B_temp = exe.run(
                g_A_trainer.infer_program,
                fetch_list=[
                    g_A_trainer.fake_A, g_A_trainer.fake_B, g_A_trainer.cyc_A,
                    g_A_trainer.cyc_B
                ],
                feed={"input_A": tensor_A,
                      "input_B": tensor_B})
            fake_A_temp = np.squeeze(fake_A_temp[0]).transpose([1, 2, 0])
            fake_B_temp = np.squeeze(fake_B_temp[0]).transpose([1, 2, 0])
            cyc_A_temp = np.squeeze(cyc_A_temp[0]).transpose([1, 2, 0])
            cyc_B_temp = np.squeeze(cyc_B_temp[0]).transpose([1, 2, 0])
            input_A_temp = np.squeeze(data_A[0]).transpose([1, 2, 0])
            input_B_temp = np.squeeze(data_B[0]).transpose([1, 2, 0])

            imsave(out_path + "/fakeB_" + str(epoch) + "_" + A_name, (
                (fake_B_temp + 1) * 127.5).astype(np.uint8))
            imsave(out_path + "/fakeA_" + str(epoch) + "_" + B_name, (
                (fake_A_temp + 1) * 127.5).astype(np.uint8))
            imsave(out_path + "/cycA_" + str(epoch) + "_" + A_name, (
                (cyc_A_temp + 1) * 127.5).astype(np.uint8))
            imsave(out_path + "/cycB_" + str(epoch) + "_" + B_name, (
                (cyc_B_temp + 1) * 127.5).astype(np.uint8))
            imsave(out_path + "/inputA_" + str(epoch) + "_" + A_name, (
                (input_A_temp + 1) * 127.5).astype(np.uint8))
            imsave(out_path + "/inputB_" + str(epoch) + "_" + B_name, (
                (input_B_temp + 1) * 127.5).astype(np.uint8))
            i += 1

    def checkpoints(epoch):
        out_path = args.output + "/checkpoints/" + str(epoch)
        if not os.path.exists(out_path):
            os.makedirs(out_path)
        fluid.io.save_persistables(
W
whs 已提交
122
            exe, out_path + "/g_a", main_program=g_A_trainer.program, filename="params")
W
whs 已提交
123
        fluid.io.save_persistables(
W
whs 已提交
124
            exe, out_path + "/g_b", main_program=g_B_trainer.program, filename="params")
W
whs 已提交
125
        fluid.io.save_persistables(
W
whs 已提交
126
            exe, out_path + "/d_a", main_program=d_A_trainer.program, filename="params")
W
whs 已提交
127
        fluid.io.save_persistables(
W
whs 已提交
128
            exe, out_path + "/d_b", main_program=d_B_trainer.program, filename="params")
W
whs 已提交
129
        print("saved checkpoint to {}".format(out_path))
W
whs 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142
        sys.stdout.flush()

    def init_model():
        assert os.path.exists(
            args.init_model), "[%s] cann't be found." % args.init_mode
        fluid.io.load_persistables(
            exe, args.init_model + "/g_a", main_program=g_A_trainer.program)
        fluid.io.load_persistables(
            exe, args.init_model + "/g_b", main_program=g_B_trainer.program)
        fluid.io.load_persistables(
            exe, args.init_model + "/d_a", main_program=d_A_trainer.program)
        fluid.io.load_persistables(
            exe, args.init_model + "/d_b", main_program=d_B_trainer.program)
W
whs 已提交
143
        print("Load model from {}".format(args.init_model))
W
whs 已提交
144 145 146

    if args.init_model:
        init_model()
W
whs 已提交
147 148
    losses=[[], []]
    t_time = 0
W
whs 已提交
149 150 151
    for epoch in range(args.epoch):
        batch_id = 0
        for i in range(max_images_num):
W
whs 已提交
152 153
            data_A = next(A_reader)
            data_B = next(B_reader)
W
whs 已提交
154 155 156 157
            tensor_A = core.LoDTensor()
            tensor_B = core.LoDTensor()
            tensor_A.set(data_A, place)
            tensor_B.set(data_B, place)
W
whs 已提交
158
            s_time = time.time()
W
whs 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172
            # optimize the g_A network
            g_A_loss, fake_B_tmp = exe.run(
                g_A_trainer.program,
                fetch_list=[g_A_trainer.g_loss_A, g_A_trainer.fake_B],
                feed={"input_A": tensor_A,
                      "input_B": tensor_B})

            fake_pool_B = B_pool.pool_image(fake_B_tmp)

            # optimize the d_B network
            d_B_loss = exe.run(
                d_B_trainer.program,
                fetch_list=[d_B_trainer.d_loss_B],
                feed={"input_B": tensor_B,
W
whs 已提交
173
                      "fake_pool_B": fake_pool_B})[0]
W
whs 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

            # optimize the g_B network
            g_B_loss, fake_A_tmp = exe.run(
                g_B_trainer.program,
                fetch_list=[g_B_trainer.g_loss_B, g_B_trainer.fake_A],
                feed={"input_A": tensor_A,
                      "input_B": tensor_B})

            fake_pool_A = A_pool.pool_image(fake_A_tmp)

            # optimize the d_A network
            d_A_loss = exe.run(
                d_A_trainer.program,
                fetch_list=[d_A_trainer.d_loss_A],
                feed={"input_A": tensor_A,
W
whs 已提交
189
                      "fake_pool_A": fake_pool_A})[0]
190 191 192 193
            batch_time = time.time() - s_time
            t_time += batch_time
            print("epoch{}; batch{}; g_A_loss: {}; d_B_loss: {}; g_B_loss: {}; d_A_loss: {}; "
                  "Batch_time_cost: {:.2f}".format(
W
whs 已提交
194
                epoch, batch_id, g_A_loss[0], d_B_loss[0], g_B_loss[0],
195
                d_A_loss[0], batch_time))
W
whs 已提交
196 197
            losses[0].append(g_A_loss[0])
            losses[1].append(d_A_loss[0])
W
whs 已提交
198 199 200
            sys.stdout.flush()
            batch_id += 1

W
whs 已提交
201
        if args.run_test and not args.run_ce:
W
whs 已提交
202
            test(epoch)
W
whs 已提交
203
        if args.save_checkpoints and not args.run_ce:
W
whs 已提交
204
            checkpoints(epoch)
W
whs 已提交
205 206 207 208
    if args.run_ce:
        print("kpis,g_train_cost,{}".format(np.mean(losses[0])))
        print("kpis,d_train_cost,{}".format(np.mean(losses[1])))
        print("kpis,duration,{}".format(t_time / args.epoch))
W
whs 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222


if __name__ == "__main__":
    args = parser.parse_args()
    print_arguments(args)
    if args.profile:
        if args.use_gpu:
            with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
                train(args)
        else:
            with profiler.profiler("CPU", sorted_key='total') as cpuprof:
                train(args)
    else:
        train(args)