infer.py 2.4 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
import argparse
import functools
import os
from PIL import Image
from paddle.fluid import core
import paddle.fluid as fluid
import paddle
import numpy as np
from scipy.misc import imsave
from model import *
import glob
from utility import add_arguments, print_arguments

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('input',             str,   None, "The images to be infered.")
add_arg('output',            str,   "./infer_result", "The directory the infer result to be saved to.")
add_arg('init_model',        str,   None,       "The init model file of directory.")
add_arg('input_style',        str,  "A",       "The style of the input, A or B")
add_arg('use_gpu',           bool,  True,       "Whether to use GPU to train.")
# yapf: enable


def infer(args):
    data_shape = [-1, 3, 256, 256]
    input = fluid.layers.data(name='input', shape=data_shape, dtype='float32')
    if args.input_style == "A":
W
whs 已提交
29
        model_name = 'g_a'
W
whs 已提交
30 31
        fake = build_generator_resnet_9blocks(input, name="g_A")
    elif args.input_style == "B":
W
whs 已提交
32
        model_name = 'g_b'
W
whs 已提交
33 34 35 36 37 38 39 40 41
        fake = build_generator_resnet_9blocks(input, name="g_B")
    else:
        raise "Input with style [%s] is not supported." % args.input_style
    # prepare environment
    place = fluid.CPUPlace()
    if args.use_gpu:
        place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
W
whs 已提交
42
    fluid.io.load_persistables(exe, args.init_model + "/" + model_name)
W
whs 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    if not os.path.exists(args.output):
        os.makedirs(args.output)
    for file in glob.glob(args.input):
        image_name = os.path.basename(file)
        image = Image.open(file)
        image = image.resize((256, 256))
        image = np.array(image) / 127.5 - 1
        if len(image.shape) != 3:
            continue
        data = image.transpose([2, 0, 1])[np.newaxis, :].astype("float32")
        tensor = core.LoDTensor()
        tensor.set(data, place)

        fake_temp = exe.run(fetch_list=[fake.name], feed={"input": tensor})
        fake_temp = np.squeeze(fake_temp[0]).transpose([1, 2, 0])
        input_temp = np.squeeze(data).transpose([1, 2, 0])

        imsave(args.output + "/fake_" + image_name, (
            (fake_temp + 1) * 127.5).astype(np.uint8))


if __name__ == "__main__":
    args = parser.parse_args()
    print_arguments(args)
    infer(args)