train.py 15.6 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, FC
from paddle.fluid.dygraph.base import to_variable
import sys
import math
28
import argparse
29
import ast
X
xiaoting 已提交
30

31 32 33
parser = argparse.ArgumentParser("Training for Se-ResNeXt.")
parser.add_argument("-e", "--epoch", default=200, type=int, help="set epoch")
parser.add_argument("--ce", action="store_true", help="run ce") 
34 35 36 37 38
parser.add_argument(
        "--use_data_parallel",
        type=ast.literal_eval,
        default=False,
        help="The flag indicating whether to shuffle instances in each pass.")
39
args = parser.parse_args()
X
xiaoting 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
batch_size = 64
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "cosine_decay",
        "batch_size": batch_size,
        "epochs": [40, 80, 100],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    },
    "batch_size": batch_size,
    "lr": 0.0125,
    "total_images": 6149,
    "num_epochs":200
}

momentum_rate = 0.9
l2_decay = 1.2e-4

def optimizer_setting(params):
    ls = params["learning_strategy"]
    if "total_images" not in params:
        total_images = 6149
    else:
        total_images = params["total_images"]
    
    batch_size = ls["batch_size"]
    step = int(math.ceil(float(total_images) / batch_size))
    bd = [step * e for e in ls["epochs"]]
    lr = params["lr"]
    num_epochs = params["num_epochs"]
    optimizer = fluid.optimizer.Momentum(
        learning_rate=fluid.layers.cosine_decay(
            learning_rate=lr,step_each_epoch=step,epochs=num_epochs),
        momentum=momentum_rate,
        regularization=fluid.regularizer.L2Decay(l2_decay))

    return optimizer


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__(name_scope)

        self._conv = Conv2D(
            "conv2d",
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=False,
	    param_attr=fluid.ParamAttr(name="weights"))

        self._batch_norm = BatchNorm(self.full_name(), num_filters, act=act)

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class SqueezeExcitation(fluid.dygraph.Layer):
    def __init__(self, name_scope, num_channels, reduction_ratio):

        super(SqueezeExcitation, self).__init__(name_scope)
        self._pool = Pool2D(
            self.full_name(), pool_size=0, pool_type='avg', global_pooling=True)
        stdv = 1.0/math.sqrt(num_channels*1.0)
        self._squeeze = FC(
            self.full_name(),
            size=num_channels // reduction_ratio,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv,stdv)),
            act='relu')
        stdv = 1.0/math.sqrt(num_channels/16.0*1.0)
        self._excitation = FC(
            self.full_name(),
            size=num_channels,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv,stdv)),
            act='sigmoid')
    def forward(self, input):
        y = self._pool(input)
        y = self._squeeze(y)
        y = self._excitation(y)
        y = fluid.layers.elementwise_mul(x=input, y=y, axis=0)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 stride,
                 cardinality,
                 reduction_ratio,
                 shortcut=True):
        super(BottleneckBlock, self).__init__(name_scope)

        self.conv0 = ConvBNLayer(
            self.full_name(),
            num_filters=num_filters,
            filter_size=1,
            act="relu")
        self.conv1 = ConvBNLayer(
            self.full_name(),
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            groups=cardinality,
            act="relu")
        self.conv2 = ConvBNLayer(
            self.full_name(),
            num_filters=num_filters * 2,
            filter_size=1,
            act=None)

        self.scale = SqueezeExcitation(
            self.full_name(),
            num_channels=num_filters * 2,
            reduction_ratio=reduction_ratio)

        if not shortcut:
            self.short = ConvBNLayer(
                self.full_name(),
                num_filters=num_filters * 2,
                filter_size=1,
                stride=stride)

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 2

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=scale, act='relu')
        return y


class SeResNeXt(fluid.dygraph.Layer):
    def __init__(self, name_scope, layers=50, class_dim=102):
        super(SeResNeXt, self).__init__(name_scope)

        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
                self.full_name(),
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            self.pool = Pool2D(
                self.full_name(),
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
                self.full_name(),
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            self.pool = Pool2D(
                self.full_name(),
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
                self.full_name(),
                num_filters=64,
                filter_size=3,
                stride=2,
                act='relu')
            self.conv1 = ConvBNLayer(
                self.full_name(),
                num_filters=64,
                filter_size=3,
                stride=1,
                act='relu')
            self.conv2 = ConvBNLayer(
                self.full_name(),
                num_filters=128,
                filter_size=3,
                stride=1,
                act='relu')
            self.pool = Pool2D(
                self.full_name(),
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')

        self.bottleneck_block_list = []
        num_channels = 64
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        self.full_name(),
                        num_channels=num_channels,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        cardinality=cardinality,
                        reduction_ratio=reduction_ratio,
                        shortcut=shortcut))
                num_channels = bottleneck_block._num_channels_out
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
            self.full_name(), pool_size=7, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = FC(self.full_name(),
                      size=class_dim,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.Uniform(-stdv, stdv)))

    def forward(self, inputs):
        if self.layers == 50 or self.layers == 101:
            y = self.conv0(inputs)
            y = self.pool(y)
        elif self.layers == 152:
            y = self.conv0(inputs)
            y = self.conv1(inputs)
            y = self.conv2(inputs)
            y = self.pool(y)

        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.dropout(y, dropout_prob=0.5,seed=100)
        y = self.out(y)
        return y


def eval(model, data):

    model.eval()
    batch_size=32
    total_loss = 0.0
    total_acc1 = 0.0
    total_acc5 = 0.0
    total_sample = 0
    for batch_id, data in enumerate(data()):
        dy_x_data = np.array(
            [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
        if len(np.array([x[1] for x in data]).astype('int64')) != batch_size:
            continue
        y_data = np.array([x[1] for x in data]).astype('int64').reshape(
            batch_size, 1)

        img = to_variable(dy_x_data)
        label = to_variable(y_data)
        label._stop_gradient = True
        out = model(img)

339 340 341 342 343
        softmax_out = fluid.layers.softmax(out,use_cudnn=False)
        loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
        avg_loss = fluid.layers.mean(x=loss)
        acc_top1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=softmax_out, label=label, k=5)
X
xiaoting 已提交
344 345 346 347 348 349 350 351 352 353 354
        dy_out = avg_loss.numpy()

        total_loss += dy_out
        total_acc1 += acc_top1.numpy()
        total_acc5 += acc_top5.numpy()
        total_sample += 1
        if batch_id % 10 == 0:
            print("test | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f" % \
                  ( batch_id, total_loss / total_sample, \
                   total_acc1 / total_sample, total_acc5 / total_sample))
	    
355 356 357 358
    if args.ce:
        print("kpis\ttest_acc1\t%0.3f" % (total_acc1 / total_sample))
        print("kpis\ttest_acc5\t%0.3f" % (total_acc5 / total_sample))
        print("kpis\ttest_loss\t%0.3f" % (total_loss / total_sample))
X
xiaoting 已提交
359 360 361 362 363
    print("final eval loss %0.3f acc1 %0.3f acc5 %0.3f" % \
          (total_loss / total_sample, \
           total_acc1 / total_sample, total_acc5 / total_sample))

def train():
364
    
X
xiaoting 已提交
365
    epoch_num = train_parameters["num_epochs"]
366 367
    if args.ce:
        epoch_num = args.epoch
X
xiaoting 已提交
368 369
    batch_size = train_parameters["batch_size"]

370 371 372 373
    trainer_count = fluid.dygraph.parallel.Env().nranks
    place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
        if args.use_data_parallel else fluid.CUDAPlace(0)
    with fluid.dygraph.guard(place):
374 375 376 377 378 379
        if args.ce:
            print("ce mode")
            seed = 90
            np.random.seed(seed)
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
380 381
        if args.use_data_parallel:
            strategy = fluid.dygraph.parallel.prepare_context() 
X
xiaoting 已提交
382 383
        se_resnext = SeResNeXt("se_resnext")
        optimizer = optimizer_setting(train_parameters)
384 385
        if args.use_data_parallel:
            se_resnext = fluid.dygraph.parallel.DataParallel(se_resnext, strategy)
X
xiaoting 已提交
386 387 388 389 390
        train_reader = paddle.batch(
            paddle.dataset.flowers.train(use_xmap=False),
            batch_size=batch_size,
            drop_last=True
            )
391 392 393
        if args.use_data_parallel:
            train_reader = fluid.contrib.reader.distributed_batch_reader(
                train_reader)
X
xiaoting 已提交
394 395 396 397
        test_reader = paddle.batch(
            paddle.dataset.flowers.test(use_xmap=False), batch_size=32)       

        for epoch_id in range(epoch_num):
X
xiaoting 已提交
398 399 400 401
            total_loss = 0.0
            total_acc1 = 0.0
            total_acc5 = 0.0
            total_sample = 0
X
xiaoting 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
            for batch_id, data in enumerate(train_reader()):
                
                dy_x_data = np.array(
                    [x[0].reshape(3, 224, 224)
                    for x in data]).astype('float32')
                y_data = np.array(
                    [x[1] for x in data]).astype('int64').reshape(
                        batch_size, 1)

                img = to_variable(dy_x_data)
                label = to_variable(y_data)
                label.stop_gradient = True

                out = se_resnext(img)
                softmax_out = fluid.layers.softmax(out,use_cudnn=False)
                loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
                avg_loss = fluid.layers.mean(x=loss)
                
                acc_top1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
                acc_top5 = fluid.layers.accuracy(input=softmax_out, label=label, k=5)

                dy_out = avg_loss.numpy()
424 425 426 427 428 429
                if args.use_data_parallel:
                    avg_loss = se_resnext.scale_loss(avg_loss)
                    avg_loss.backward()
                    se_resnext.apply_collective_grads()
                else:
                    avg_loss.backward()
X
xiaoting 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443

                optimizer.minimize(avg_loss)
                se_resnext.clear_gradients()
                
                lr = optimizer._global_learning_rate().numpy()
                total_loss += dy_out
                total_acc1 += acc_top1.numpy()
                total_acc5 += acc_top5.numpy()
                total_sample += 1
                if batch_id % 10 == 0:
                    print( "epoch %d | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f lr %0.5f" % \
                           ( epoch_id, batch_id, total_loss / total_sample, \
                             total_acc1 / total_sample, total_acc5 / total_sample, lr))

444 445 446 447
            if args.ce:
                print("kpis\ttrain_acc1\t%0.3f" % (total_acc1 / total_sample))
                print("kpis\ttrain_acc5\t%0.3f" % (total_acc5 / total_sample))
                print("kpis\ttrain_loss\t%0.3f" % (total_loss / total_sample))
X
xiaoting 已提交
448 449 450 451 452 453 454 455 456
            print("epoch %d | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f" % \
                  (epoch_id, batch_id, total_loss / total_sample, \
                   total_acc1 / total_sample, total_acc5 / total_sample))
            se_resnext.eval()
            eval(se_resnext, test_reader)
            se_resnext.train()

if __name__ == '__main__':
    train()