transforms.py 6.9 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
from __future__ import division
import math
import random
from PIL import Image
import numpy as np
import warnings

__all__ = [
    "Compose", "Resize", "Scale", "RandomHorizontalFlip", "RandomResizedCrop",
    "CenterCrop"
]


def _is_pil_image(img):
    return isinstance(img, Image.Image)


def crop(img, i, j, h, w):
    if not _is_pil_image(img):
        raise TypeError('img should be a PIL Image, but be {}'.format(
            type(img)))
    return img.crop((j, i, j + w, i + h))


def resize(img, size, interpolation=Image.BILINEAR):
    if not _is_pil_image(img):
        raise TypeError('img should be a PIL Image, but be {}'.format(
            type(img)))
    if not (isinstance(size, int) or
            (isinstance(size, tuple) and len(size) == 2)):
        raise TypeError('Wrong size arg: {}'.format(size))
    if isinstance(size, int):
        w, h = img.size
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
            return img.resize((ow, oh), interpolation)
        else:
            oh = size
            ow = int(size * w / h)
            return img.resize((ow, oh), interpolation)
    else:
        return img.resize(size[::-1], interpolation)


def center_crop(img, output_size):
    if isinstance(output_size, int):
        output_size = (output_size, output_size)
    w, h = img.size
    th, tw = output_size
    i = int(round((h - th) / 2.))
    j = int(round((w - tw) / 2.))
    return crop(img, i, j, th, tw)


class Compose(object):
    """Make some transforms in a chain.

    Args:
        transforms (list): list of transforms to be in a chain.
    """

    def __init__(self, transforms):
        self._transforms = transforms

    def __call__(self, img):
        for t in self._transforms:
            img = t(img)
        return img


class Resize(object):
    """Resize the input PIL Image.

    Args:
        size (tuple | int): Output size. If the size is a tuple,
            resize image to that size (h, w). If the size is an int,
            smaller edge of the image will be resized to this size.
        interpolation (int): Interpolation method.
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
        assert isinstance(size, int) or (isinstance(size, tuple) and
                                         len(size) == 2)
        self._size = size
        self._interpolation = interpolation

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be resized.

        Returns:
            PIL Image: Resized image.
        """
        return resize(img, self._size, self._interpolation)


class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            "The use of the transforms.Scale transform is deprecated, " +
            "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


class RandomHorizontalFlip(object):
    """Horizontally flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
        if random.random() < self.p:
            if not _is_pil_image(img):
                raise TypeError('img should be a PIL image, but be {}'.format(
                    type(img)))
            return img.transpose(Image.FLIP_LEFT_RIGHT)
        return img


class RandomResizedCrop(object):
    """Crop the input PIL Image to random size and aspect ratio, and then
       resize the PIL Image to target size.

    Args:
        size: target size
        scale: range of ratio of the origin size to be cropped
        ratio: range of aspect ratio of the origin aspect ratio to be cropped
        interpolation: interpolation method
    """

    def __init__(self,
                 size,
                 scale=(0.08, 1.0),
                 ratio=(3. / 4., 4. / 3.),
                 interpolation=Image.BILINEAR):
        if isinstance(size, tuple):
            self._size = size
        else:
            self._size = (size, size)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            raise ErrorValue("range should be of kind of (min, max)")

        self._interpolation = interpolation
        self._scale = scale
        self._ratio = ratio

    @staticmethod
    def get_params(img, scale, ratio):
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
        area = img.size[0] * img.size[1]

        for attempt in range(10):
            target_area = random.uniform(*scale) * area
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if w <= img.size[0] and h <= img.size[1]:
                i = random.randint(0, img.size[1] - h)
                j = random.randint(0, img.size[0] - w)
                return i, j, h, w

        # Fallback to central crop
        in_ratio = img.size[0] / img.size[1]
        if (in_ratio < min(ratio)):
            w = img.size[0]
            h = w / min(ratio)
        elif (in_ratio > max(ratio)):
            h = img.size[1]
            w = h * max(ratio)
        else:  # whole image
            w = img.size[0]
            h = img.size[1]
        i = (img.size[1] - h) // 2
        j = (img.size[0] - w) // 2
        return i, j, h, w

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped and resized.

        Returns:
            PIL Image: Randomly cropped and resized image.
        """
        i, j, h, w = self.get_params(img, self._scale, self._ratio)
        assert _is_pil_image(img), 'image should be a PIL Image'
        img = crop(img, i, j, h, w)
        img = resize(img, self._size, self._interpolation)
        return img


class CenterCrop(object):
    """Crops the given PIL Image at the center.

    Args:
        size (tuple|int): Output size. If size is an int instead of a tuple
            like (h, w), a square crop (size, size) is made.
    """

    def __init__(self, size):
        if isinstance(size, int):
            self.size = (size, size)
        else:
            self.size = size

    def __call__(self, img):
        return center_crop(img, self.size)