reader.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
import os
import math
import random
import functools
import numpy as np
import paddle
from PIL import Image, ImageEnhance

random.seed(0)
np.random.seed(0)

DATA_DIM = 224

THREAD = 16
BUF_SIZE = 10240

DATA_DIR = 'data/ILSVRC2012'

img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))


def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


def random_crop(img, size, scale=[0.08, 1.0], ratio=[3. / 4., 4. / 3.]):
    aspect_ratio = math.sqrt(np.random.uniform(*ratio))
    w = 1. * aspect_ratio
    h = 1. / aspect_ratio

    bound = min((float(img.size[0]) / img.size[1]) / (w**2),
                (float(img.size[1]) / img.size[0]) / (h**2))
    scale_max = min(scale[1], bound)
    scale_min = min(scale[0], bound)

    target_area = img.size[0] * img.size[1] * np.random.uniform(scale_min,
                                                                scale_max)
    target_size = math.sqrt(target_area)
    w = int(target_size * w)
    h = int(target_size * h)

    i = np.random.randint(0, img.size[0] - w + 1)
    j = np.random.randint(0, img.size[1] - h + 1)

    img = img.crop((i, j, i + w, j + h))
    img = img.resize((size, size), Image.LANCZOS)
    return img


def rotate_image(img):
    angle = np.random.randint(-10, 11)
    img = img.rotate(angle)
    return img


def distort_color(img):
    def random_brightness(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Brightness(img).enhance(e)

    def random_contrast(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Contrast(img).enhance(e)

    def random_color(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Color(img).enhance(e)

    ops = [random_brightness, random_contrast, random_color]
    np.random.shuffle(ops)

    img = ops[0](img)
    img = ops[1](img)
    img = ops[2](img)

    return img


def process_image(sample, mode, color_jitter, rotate):
    img_path = sample[0]

    img = Image.open(img_path)
    if mode == 'train':
        if rotate: img = rotate_image(img)
        img = random_crop(img, DATA_DIM)
    else:
        img = resize_short(img, target_size=256)
        img = crop_image(img, target_size=DATA_DIM, center=True)
    if mode == 'train':
        if color_jitter:
            img = distort_color(img)
        if np.random.randint(0, 2) == 1:
            img = img.transpose(Image.FLIP_LEFT_RIGHT)

    if img.mode != 'RGB':
        img = img.convert('RGB')

    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
    img -= img_mean
    img /= img_std

    if mode == 'train' or mode == 'val':
        return img, sample[1]
    elif mode == 'test':
        return [img]


def _reader_creator(file_list,
                    mode,
                    shuffle=False,
                    color_jitter=False,
                    rotate=False,
                    data_dir=DATA_DIR,
                    batch_size=1):
    def reader():
        with open(file_list) as flist:
            full_lines = [line.strip() for line in flist]
            if shuffle:
                np.random.shuffle(full_lines)
            if mode == 'train' and os.getenv('PADDLE_TRAINING_ROLE'):
                # distributed mode if the env var `PADDLE_TRAINING_ROLE` exits
                trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
                trainer_count = int(os.getenv("PADDLE_TRAINERS", "1"))
                per_node_lines = len(full_lines) // trainer_count
                lines = full_lines[trainer_id * per_node_lines:(trainer_id + 1)
                                   * per_node_lines]
                print(
                    "read images from %d, length: %d, lines length: %d, total: %d"
                    % (trainer_id * per_node_lines, per_node_lines, len(lines),
                       len(full_lines)))
            else:
                lines = full_lines

            for line in lines:
                if mode == 'train' or mode == 'val':
                    img_path, label = line.split()
                    #                    img_path = img_path.replace("JPEG", "jpeg")
                    img_path = os.path.join(data_dir, img_path)
                    yield img_path, int(label)
                elif mode == 'test':
                    img_path = os.path.join(data_dir, line)
                    yield [img_path]

    mapper = functools.partial(
        process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)

    return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)


def train(data_dir=DATA_DIR):
    file_list = os.path.join(data_dir, 'train_list.txt')
    return _reader_creator(
        file_list,
        'train',
        shuffle=True,
        color_jitter=False,
        rotate=False,
        data_dir=data_dir)


def val(data_dir=DATA_DIR):
    file_list = os.path.join(data_dir, 'val_list.txt')
    return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir)


def test(data_dir=DATA_DIR):
    file_list = os.path.join(data_dir, 'val_list.txt')
    return _reader_creator(file_list, 'test', shuffle=False, data_dir=data_dir)