network_conf.py 7.5 KB
Newer Older
S
Superjom 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
from paddle import v2 as paddle
from paddle.v2.attr import ParamAttr
from utils import TaskType, logger


class DSSM(object):
    def __init__(self,
                 dnn_dims=[],
                 vocab_sizes=[],
                 task_type=TaskType.CLASSFICATION,
                 share_semantic_generator=False,
                 class_num=None,
                 share_embed=False):
        '''
        @dnn_dims: list of int
            dimentions of each layer in semantic vector generator.
        @vocab_sizes: 2-d tuple
            size of both left and right items.
        @task_type: str
            type of task, should be 'rank', 'regression' or 'classification'
        @share_semantic_generator: bool
            whether to share the semantic vector generator for both left and right.
        @share_embed: bool
            whether to share the embeddings between left and right.
        @class_num: int
            number of categories.
        '''
        assert len(
            vocab_sizes
        ) == 2, "vocab_sizes specify the sizes left and right inputs, and dim should be 2."

        self.dnn_dims = dnn_dims
        self.vocab_sizes = vocab_sizes
        self.share_semantic_generator = share_semantic_generator
        self.share_embed = share_embed
        self.task_type = task_type
        self.class_num = class_num

        logger.info("vocabulary sizes: %s" % str(self.vocab_sizes))

    def __call__(self):
        if self.task_type == TaskType.CLASSFICATION:
            return self._build_classification_model()
        return self._build_rank_model()

    def create_embedding(self, input, prefix=''):
        '''
        Create an embedding table whose name has a `prefix`.
        '''
        emb = paddle.layer.embedding(
            input=input,
            size=self.dnn_dims[0],
            param_attr=ParamAttr(name='%s_emb.w' % prefix))
        return emb

    def create_fc(self, emb, prefix=''):
        '''
        A multi-layer fully connected neural networks.

        @emb: paddle.layer
            output of the embedding layer
        @prefix: str
            prefix of layers' names, used to share parameters between more than one `fc` parts.
        '''
        _input_layer = paddle.layer.pooling(
            input=emb, pooling_type=paddle.pooling.Max())
        for id, dim in enumerate(self.dnn_dims[1:]):
            name = "%s_fc_%d_%d" % (prefix, id, dim)
            fc = paddle.layer.fc(
                name=name,
                input=_input_layer,
                size=dim,
                act=paddle.activation.Relu(),
                param_attr=ParamAttr(name='%s.w' % name),
                bias_attr=None, )
            _input_layer = fc
        return _input_layer

    def create_cnn(self, emb, prefix=''):
        '''
        A multi-layer CNN.

        @emb: paddle.layer
            output of the embedding layer
        @prefix: str
            prefix of layers' names, used to share parameters between more than one `cnn` parts.
        '''
        pass

    def _build_classification_model(self):
        '''
        Build a classification model, and the cost is returned.

        A Classification has 3 inputs:
          - source sentence
          - target sentence
          - classification label

        '''
        # prepare inputs.
        assert self.class_num

        source = paddle.layer.data(
            name='source_input',
            type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0]))
        target = paddle.layer.data(
            name='target_input',
            type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
        label = paddle.layer.data(
            name='label_input',
            type=paddle.data_type.integer_value(self.class_num))

        prefixs = '_ _'.split(
        ) if self.share_semantic_generator else 'left right'.split()
        embed_prefixs = '_ _'.split(
        ) if self.share_embed else 'left right'.split()

        word_vecs = []
        for id, input in enumerate([source, target]):
            x = self.create_embedding(input, prefix=embed_prefixs[id])
            word_vecs.append(x)

        semantics = []
        for id, input in enumerate(word_vecs):
            x = self.create_fc(input, prefix=prefixs[id])
            semantics.append(x)

        concated_vector = paddle.layer.concat(semantics)
        prediction = paddle.layer.fc(
            input=concated_vector,
            size=self.class_num,
            act=paddle.activation.Softmax())
        cost = paddle.layer.classification_cost(input=prediction, label=label)
        return cost, prediction, label

    def _build_rank_model(self):
        '''
        Build a pairwise rank model, and the cost is returned.

        A pairwise rank model has 3 inputs:
          - source sentence
          - left_target sentence
          - right_target sentence
          - label, 1 if left_target should be sorted in front of right_target, otherwise 0.
        '''
        source = paddle.layer.data(
            name='source_input',
            type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0]))
        left_target = paddle.layer.data(
            name='left_target_input',
            type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
        right_target = paddle.layer.data(
            name='right_target_input',
            type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
        label = paddle.layer.data(
            name='label_input', type=paddle.data_type.integer_value(1))

        prefixs = '_ _ _'.split(
        ) if self.share_semantic_generator else 'source left right'.split()
        embed_prefixs = '_ _'.split(
        ) if self.share_embed else 'source target target'.split()

        word_vecs = []
        for id, input in enumerate([source, left_target, right_target]):
            x = self.create_embedding(input, prefix=embed_prefixs[id])
            word_vecs.append(x)

        semantics = []
        for id, input in enumerate(word_vecs):
            x = self.create_fc(input, prefix=prefixs[id])
            semantics.append(x)

        # cossim score of source and left_target
        left_score = paddle.layer.cos_sim(semantics[0], semantics[1])
        # cossim score of source and right target
        right_score = paddle.layer.cos_sim(semantics[0], semantics[2])

        # rank cost
        cost = paddle.layer.rank_cost(left_score, right_score, label=label)
        # prediction = left_score - right_score
        # but this operator is not supported currently.
        # so AUC will not used.
        return cost, None, None


class RankMetrics(object):
    '''
    A custom metrics to calculate AUC.

    Paddle's rank model do not support auc evaluator directly,
    to make it, infer all the outputs and use python to calculate
    the metrics.
    '''

    def __init__(self, model_parameters, left_score_layer, right_score_layer,
                 label):
        '''
        @model_parameters: dict
            model's parameters
        @left_score_layer: paddle.layer
            left part's score
        @right_score_laeyr: paddle.layer
            right part's score
        @label: paddle.data_layer
            label input
        '''
        self.inferer = paddle.inference.Inference(
            output_layer=[left_score_layer, right_score_layer],
            parameters=model_parameters)

    def test(self, input):
        scores = []
        for id, rcd in enumerate(input()):
            # output [left_score, right_score, label]
            res = self.inferer(input=input)
            scores.append(res)
        print scores