introduction_en.ipynb 4.5 KB
Notebook
Newer Older
W
wangxinxin08 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Introduction\n",
    "We developed a series of lightweight models, named PP-PicoDet. Because of the excellent performance, our models are very suitable for deployment on mobile or CPU.\n",
    "\n",
    "The PP-PicoDet model has the following characteristics:\n",
    "- 🌟 Higher mAP: the **first** object detectors that surpass mAP(0.5:0.95) **30+** within 1M parameters when the input size is 416.\n",
    "- 🚀 Faster latency: 150FPS on mobile ARM CPU.\n",
    "- 😊 Deploy friendly: support PaddleLite/MNN/NCNN/OpenVINO and provide C++/Python/Android implementation.\n",
    "- 😍 Advanced algorithm: use the most advanced algorithms and offer innovation, such as ESNet, CSP-PAN, SimOTA with VFL, etc.\n",
    "\n",
    "For more details, please refer to [official documentation](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/configs/picodet/README_en.md)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Model Effects\n",
    "The accuracy and speed comparison of PP-Picodet and other lightweight models is shown below:\n",
    "<div align=\"center\">\n",
    "  <img src=\"https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/docs/images/picodet_map.png\" width=500 />\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. How to use the model\n",
    "Clone PaddleDetection firstly and put the COCO-style dataset in `dataset/coco`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "vscode": {
     "languageId": "plaintext"
    }
   },
   "outputs": [],
   "source": [
    "%cd ~/work\n",
    "!git clone https://gitee.com/paddlepaddle/PaddleDetection\n",
    "%cd PaddleDetection"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.1 Training\n",
    "Training PP-Picodet with following command"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "vscode": {
     "languageId": "plaintext"
    }
   },
   "outputs": [],
   "source": [
    "# training with single GPU\n",
    "!CUDA_VISIBLE_DEVICES=0 python tools/train.py -c configs/picodet/picodet_s_320_coco_lcnet.yml --eval\n",
    "\n",
    "# training with mutiple GPUs\n",
    "!CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/picodet/picodet_s_320_coco_lcnet.yml --eval"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Notes:**\n",
    "- All models of PicoDet are trained by 4 GPUs. If the number of GPUs is changed, the learning rate `base_lr` needs to be scaled linearly."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.2 Deployment\n",
    "PP-Picodet supports multiple deployment methods, please refer to [PP-Picodet deployment](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/configs/picodet/README_en.md#deployment) for details."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 4. Model principle\n",
    "The overall structure of PP-Picodet is shown below:\n",
    "<div align=\"center\">\n",
    "  <img src=\"https://bj.bcebos.com/v1/paddledet/modelcenter/images/PP-Picodet-arch.png\" width=70% />\n",
    "</div>\n",
    "PP-Picodet is composed of following methods:\n",
    "- Enhanced ShuffleNet-ESNet\n",
    "- CSP-PAN\n",
    "- SimOTA label assignment\n",
    "\n",
    "For more details, please refer to our technical report: https://arxiv.org/abs/2111.00902"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 5. Attention\n",
    "**All commands run on AI Studio's `jupyter` by default. If running on a terminal, remove the % or ! at the beginning of the command.**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 6. Related papers and citations\n",
    "```\n",
    "@article{yu2021pp,\n",
    "  title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices},\n",
    "  author={Yu, Guanghua and Chang, Qinyao and Lv, Wenyu and Xu, Chang and Cui, Cheng and Ji, Wei and Dang, Qingqing and Deng, Kaipeng and Wang, Guanzhong and Du, Yuning and others},\n",
    "  journal={arXiv preprint arXiv:2111.00902},\n",
    "  year={2021}\n",
    "}\n",
    "```"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "name": "python"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}