attention_model.py 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
from paddle.fluid.contrib.decoder.beam_search_decoder import *


def lstm_step(x_t, hidden_t_prev, cell_t_prev, size):
    def linear(inputs):
        return fluid.layers.fc(input=inputs, size=size, bias_attr=True)

    forget_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    input_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    output_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    cell_tilde = fluid.layers.tanh(x=linear([hidden_t_prev, x_t]))

    cell_t = fluid.layers.sums(input=[
        fluid.layers.elementwise_mul(
            x=forget_gate, y=cell_t_prev), fluid.layers.elementwise_mul(
                x=input_gate, y=cell_tilde)
    ])

    hidden_t = fluid.layers.elementwise_mul(
        x=output_gate, y=fluid.layers.tanh(x=cell_t))

    return hidden_t, cell_t


def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
                   target_dict_dim, is_generating, beam_size, max_length):
    """Construct a seq2seq network."""

    def bi_lstm_encoder(input_seq, gate_size):
        # A bi-directional lstm encoder implementation.
        # Linear transformation part for input gate, output gate, forget gate
        # and cell activation vectors need be done outside of dynamic_lstm.
        # So the output size is 4 times of gate_size.
        input_forward_proj = fluid.layers.fc(input=input_seq,
                                             size=gate_size * 4,
                                             act='tanh',
                                             bias_attr=False)
        forward, _ = fluid.layers.dynamic_lstm(
            input=input_forward_proj, size=gate_size * 4, use_peepholes=False)
        input_reversed_proj = fluid.layers.fc(input=input_seq,
                                              size=gate_size * 4,
                                              act='tanh',
                                              bias_attr=False)
        reversed, _ = fluid.layers.dynamic_lstm(
            input=input_reversed_proj,
            size=gate_size * 4,
            is_reverse=True,
            use_peepholes=False)
        return forward, reversed

    # The encoding process. Encodes the input words into tensors.
    src_word_idx = fluid.layers.data(
        name='source_sequence', shape=[1], dtype='int64', lod_level=1)

    src_embedding = fluid.layers.embedding(
        input=src_word_idx,
        size=[source_dict_dim, embedding_dim],
        dtype='float32')

    src_forward, src_reversed = bi_lstm_encoder(
        input_seq=src_embedding, gate_size=encoder_size)

    encoded_vector = fluid.layers.concat(
        input=[src_forward, src_reversed], axis=1)

    encoded_proj = fluid.layers.fc(input=encoded_vector,
                                   size=decoder_size,
                                   bias_attr=False)

    backward_first = fluid.layers.sequence_pool(
        input=src_reversed, pool_type='first')

    decoder_boot = fluid.layers.fc(input=backward_first,
                                   size=decoder_size,
                                   bias_attr=False,
                                   act='tanh')

    cell_init = fluid.layers.fill_constant_batch_size_like(
        input=decoder_boot,
        value=0.0,
        shape=[-1, decoder_size],
        dtype='float32')
    cell_init.stop_gradient = False

    # Create a RNN state cell by providing the input and hidden states, and
    # specifies the hidden state as output.
    h = InitState(init=decoder_boot, need_reorder=True)
    c = InitState(init=cell_init)

    state_cell = StateCell(
        inputs={'x': None,
                'encoder_vec': None,
                'encoder_proj': None},
        states={'h': h,
                'c': c},
        out_state='h')

    def simple_attention(encoder_vec, encoder_proj, decoder_state):
        # The implementation of simple attention model
        decoder_state_proj = fluid.layers.fc(input=decoder_state,
                                             size=decoder_size,
                                             bias_attr=False)
        decoder_state_expand = fluid.layers.sequence_expand(
            x=decoder_state_proj, y=encoder_proj)
        # concated lod should inherit from encoder_proj
K
ktlichkid 已提交
125 126
        mixed_state = encoder_proj + decoder_state_expand
        attention_weights = fluid.layers.fc(input=mixed_state,
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
                                            size=1,
                                            bias_attr=False)
        attention_weights = fluid.layers.sequence_softmax(
            input=attention_weights)
        weigths_reshape = fluid.layers.reshape(x=attention_weights, shape=[-1])
        scaled = fluid.layers.elementwise_mul(
            x=encoder_vec, y=weigths_reshape, axis=0)
        context = fluid.layers.sequence_pool(input=scaled, pool_type='sum')
        return context

    @state_cell.state_updater
    def state_updater(state_cell):
        # Define the updater of RNN state cell
        current_word = state_cell.get_input('x')
        encoder_vec = state_cell.get_input('encoder_vec')
        encoder_proj = state_cell.get_input('encoder_proj')
        prev_h = state_cell.get_state('h')
        prev_c = state_cell.get_state('c')
        context = simple_attention(encoder_vec, encoder_proj, prev_h)
        decoder_inputs = fluid.layers.concat(
            input=[context, current_word], axis=1)
        h, c = lstm_step(decoder_inputs, prev_h, prev_c, decoder_size)
        state_cell.set_state('h', h)
        state_cell.set_state('c', c)

    # Define the decoding process
    if not is_generating:
        # Training process
        trg_word_idx = fluid.layers.data(
            name='target_sequence', shape=[1], dtype='int64', lod_level=1)

        trg_embedding = fluid.layers.embedding(
            input=trg_word_idx,
            size=[target_dict_dim, embedding_dim],
            dtype='float32')

        # A decoder for training
        decoder = TrainingDecoder(state_cell)

        with decoder.block():
            current_word = decoder.step_input(trg_embedding)
            encoder_vec = decoder.static_input(encoded_vector)
            encoder_proj = decoder.static_input(encoded_proj)
            decoder.state_cell.compute_state(inputs={
                'x': current_word,
                'encoder_vec': encoder_vec,
                'encoder_proj': encoder_proj
            })
            h = decoder.state_cell.get_state('h')
            decoder.state_cell.update_states()
            out = fluid.layers.fc(input=h,
                                  size=target_dict_dim,
                                  bias_attr=True,
                                  act='softmax')
            decoder.output(out)

        label = fluid.layers.data(
            name='label_sequence', shape=[1], dtype='int64', lod_level=1)
        cost = fluid.layers.cross_entropy(input=decoder(), label=label)
        avg_cost = fluid.layers.mean(x=cost)
        feeding_list = ["source_sequence", "target_sequence", "label_sequence"]
        return avg_cost, feeding_list

    else:
        # Inference
        init_ids = fluid.layers.data(
            name="init_ids", shape=[1], dtype="int64", lod_level=2)
        init_scores = fluid.layers.data(
            name="init_scores", shape=[1], dtype="float32", lod_level=2)

        # A beam search decoder
        decoder = BeamSearchDecoder(
            state_cell=state_cell,
            init_ids=init_ids,
            init_scores=init_scores,
            target_dict_dim=target_dict_dim,
            word_dim=embedding_dim,
            input_var_dict={
                'encoder_vec': encoded_vector,
                'encoder_proj': encoded_proj
            },
            topk_size=50,
            sparse_emb=True,
            max_len=max_length,
            beam_size=beam_size,
            end_id=1,
            name=None)

        decoder.decode()

        translation_ids, translation_scores = decoder()
        feeding_list = ["source_sequence"]

        return translation_ids, translation_scores, feeding_list