box_utils.py 4.0 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# Detectron
# Copyright (c) 2017-present, Facebook, Inc.
# Licensed under the Apache License, Version 2.0;
# Written by Ross Girshick
# --------------------------------------------------------

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np


def xywh_to_xyxy(xywh):
    """Convert [x1 y1 w h] box format to [x1 y1 x2 y2] format."""
    if isinstance(xywh, (list, tuple)):
        # Single box given as a list of coordinates
        assert len(xywh) == 4
        x1, y1 = xywh[0], xywh[1]
        x2 = x1 + np.maximum(0., xywh[2] - 1.)
        y2 = y1 + np.maximum(0., xywh[3] - 1.)
        return (x1, y1, x2, y2)
    elif isinstance(xywh, np.ndarray):
        # Multiple boxes given as a 2D ndarray
        return np.hstack(
            (xywh[:, 0:2], xywh[:, 0:2] + np.maximum(0, xywh[:, 2:4] - 1)))
    else:
        raise TypeError('Argument xywh must be a list, tuple, or numpy array.')


def xyxy_to_xywh(xyxy):
    """Convert [x1 y1 x2 y2] box format to [x1 y1 w h] format."""
    if isinstance(xyxy, (list, tuple)):
        # Single box given as a list of coordinates
        assert len(xyxy) == 4
        x1, y1 = xyxy[0], xyxy[1]
        w = xyxy[2] - x1 + 1
        h = xyxy[3] - y1 + 1
        return (x1, y1, w, h)
    elif isinstance(xyxy, np.ndarray):
        # Multiple boxes given as a 2D ndarray
        return np.hstack((xyxy[:, 0:2], xyxy[:, 2:4] - xyxy[:, 0:2] + 1))
    else:
        raise TypeError('Argument xyxy must be a list, tuple, or numpy array.')


def clip_xyxy_to_image(x1, y1, x2, y2, height, width):
    """Clip coordinates to an image with the given height and width."""
    x1 = np.minimum(width - 1., np.maximum(0., x1))
    y1 = np.minimum(height - 1., np.maximum(0., y1))
    x2 = np.minimum(width - 1., np.maximum(0., x2))
    y2 = np.minimum(height - 1., np.maximum(0., y2))
    return x1, y1, x2, y2
J
jerrywgz 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

def nms(dets, thresh):
    """Apply classic DPM-style greedy NMS."""
    if dets.shape[0] == 0:
        return []
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    ndets = dets.shape[0]
    suppressed = np.zeros((ndets), dtype=np.int)

    # nominal indices
    # _i, _j
    # sorted indices
    # i, j
    # temp variables for box i's (the box currently under consideration)
    # ix1, iy1, ix2, iy2, iarea

    # variables for computing overlap with box j (lower scoring box)
    # xx1, yy1, xx2, yy2
    # w, h
    # inter, ovr

    for _i in range(ndets):
        i = order[_i]
        if suppressed[i] == 1:
            continue
        ix1 = x1[i]
        iy1 = y1[i]
        ix2 = x2[i]
        iy2 = y2[i]
        iarea = areas[i]
        for _j in range(_i + 1, ndets):
            j = order[_j]
            if suppressed[j] == 1:
                continue
            xx1 = max(ix1, x1[j])
            yy1 = max(iy1, y1[j])
            xx2 = min(ix2, x2[j])
            yy2 = min(iy2, y2[j])
            w = max(0.0, xx2 - xx1 + 1)
            h = max(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (iarea + areas[j] - inter)
            if ovr >= thresh:
                suppressed[j] = 1

    return np.where(suppressed == 0)[0]