eval.py 3.8 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
K
kbChen 已提交
14 15 16 17
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

18 19
import os
import sys
K
kbChen 已提交
20 21 22 23 24
import math
import time
import argparse
import functools
import numpy as np
25 26 27
import paddle
import paddle.fluid as fluid
import models
K
kbChen 已提交
28
import reader
L
LielinJiang 已提交
29
from utility import add_arguments, print_arguments, check_cuda
K
kbChen 已提交
30
from utility import fmt_time, recall_topk
31 32 33 34

# yapf: disable
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
K
kbChen 已提交
35 36 37 38 39 40 41
add_arg('model', str, "ResNet50", "Set the network to use.")
add_arg('embedding_size', int, 0, "Embedding size.")
add_arg('batch_size', int, 10, "Minibatch size.")
add_arg('image_shape', str, "3,224,224", "Input image size.")
add_arg('use_gpu', bool, True, "Whether to use GPU or not.")
add_arg('with_mem_opt', bool, False, "Whether to use memory optimization or not.")
add_arg('pretrained_model', str, None, "Whether to use pretrained model.")
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]


def eval(args):
    # parameters from arguments
    model_name = args.model
    pretrained_model = args.pretrained_model
    with_memory_optimization = args.with_mem_opt
    image_shape = [int(m) for m in args.image_shape.split(",")]

    assert model_name in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # model definition
    model = models.__dict__[model_name]()
K
kbChen 已提交
62 63
    out = model.net(input=image, embedding_size=args.embedding_size)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    test_program = fluid.default_main_program().clone(for_test=True)

    if with_memory_optimization:
        fluid.memory_optimize(fluid.default_main_program())

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

        fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)

K
kbChen 已提交
80
    test_reader = paddle.batch(reader.test(args), batch_size=args.batch_size, drop_last=False)
81 82
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

K
kbChen 已提交
83
    fetch_list = [out.name]
84

K
kbChen 已提交
85
    f, l = [], []
K
kbChen 已提交
86
    for batch_id, data in enumerate(test_reader()):
87
        t1 = time.time()
K
kbChen 已提交
88
        [feas] = exe.run(test_program, fetch_list=fetch_list, feed=feeder.feed(data))
K
kbChen 已提交
89
        label = np.asarray([x[1] for x in data])
90 91 92 93 94
        f.append(feas)
        l.append(label)

        t2 = time.time()
        period = t2 - t1
K
kbChen 已提交
95
        if batch_id % 20 == 0:
K
kbChen 已提交
96 97
            print("[%s] testbatch %d, time %2.2f sec" % \
                    (fmt_time(), batch_id, period))
98 99

    f = np.vstack(f)
K
kbChen 已提交
100
    l = np.hstack(l)
101
    recall = recall_topk(f, l, k=1)
K
kbChen 已提交
102
    print("[%s] End test %d, test_recall %.5f" % (fmt_time(), len(f), recall))
103 104 105 106 107 108
    sys.stdout.flush()


def main():
    args = parser.parse_args()
    print_arguments(args)
L
LielinJiang 已提交
109
    check_cuda(args.use_gpu)
110 111 112 113 114
    eval(args)


if __name__ == '__main__':
    main()