cityscape.py 8.8 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15
"""Reader for Cityscape dataset.
"""
16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
19 20 21
import os
import cv2
import numpy as np
22
import paddle.dataset as dataset
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

DATA_PATH = "./data/cityscape"
TRAIN_LIST = DATA_PATH + "/train.list"
TEST_LIST = DATA_PATH + "/val.list"
IGNORE_LABEL = 255
NUM_CLASSES = 19
TRAIN_DATA_SHAPE = (3, 720, 720)
TEST_DATA_SHAPE = (3, 1024, 2048)
IMG_MEAN = np.array((103.939, 116.779, 123.68), dtype=np.float32)


def train_data_shape():
    return TRAIN_DATA_SHAPE


def test_data_shape():
    return TEST_DATA_SHAPE


def num_classes():
    return NUM_CLASSES


class DataGenerater:
    def __init__(self, data_list, mode="train", flip=True, scaling=True):
        self.flip = flip
        self.scaling = scaling
        self.image_label = []
        with open(data_list, 'r') as f:
            for line in f:
                image_file, label_file = line.strip().split(' ')
                self.image_label.append((image_file, label_file))

    def create_train_reader(self, batch_size):
        """
        Create a reader for train dataset.
        """

        def reader():
            np.random.shuffle(self.image_label)
            images = []
            labels_sub1 = []
            labels_sub2 = []
            labels_sub4 = []
            count = 0
            for image, label in self.image_label:
                image, label_sub1, label_sub2, label_sub4 = self.process_train_data(
                    image, label)
                count += 1
                images.append(image)
                labels_sub1.append(label_sub1)
                labels_sub2.append(label_sub2)
                labels_sub4.append(label_sub4)
                if count == batch_size:
                    yield self.mask(
                        np.array(images),
                        np.array(labels_sub1),
                        np.array(labels_sub2), np.array(labels_sub4))
                    images = []
                    labels_sub1 = []
                    labels_sub2 = []
                    labels_sub4 = []
                    count = 0
            if images:
                yield self.mask(
                    np.array(images),
                    np.array(labels_sub1),
                    np.array(labels_sub2), np.array(labels_sub4))

        return reader

    def create_test_reader(self):
        """
        Create a reader for test dataset.
        """

        def reader():
            for image, label in self.image_label:
                image, label = self.load(image, label)
102
                image = dataset.image.to_chw(image)[np.newaxis, :]
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                label = label[np.newaxis, :, :, np.newaxis].astype("float32")
                label_mask = np.where((label != IGNORE_LABEL).flatten())[
                    0].astype("int32")
                yield image, label, label_mask

        return reader

    def process_train_data(self, image, label):
        """
        Process training data.
        """
        image, label = self.load(image, label)
        if self.flip:
            image, label = self.random_flip(image, label)
        if self.scaling:
            image, label = self.random_scaling(image, label)
        image, label = self.resize(image, label, out_size=TRAIN_DATA_SHAPE[1:])
        label = label.astype("float32")
121 122 123 124
        label_sub1 = dataset.image.to_chw(self.scale_label(label, factor=4))
        label_sub2 = dataset.image.to_chw(self.scale_label(label, factor=8))
        label_sub4 = dataset.image.to_chw(self.scale_label(label, factor=16))
        image = dataset.image.to_chw(image)
125 126 127 128 129 130
        return image, label_sub1, label_sub2, label_sub4

    def load(self, image, label):
        """
        Load image from file.
        """
131
        image = dataset.image.load_image(
132 133
            DATA_PATH + "/" + image, is_color=True).astype("float32")
        image -= IMG_MEAN
134
        label = dataset.image.load_image(
135 136 137 138 139 140 141 142 143
            DATA_PATH + "/" + label, is_color=False).astype("float32")
        return image, label

    def random_flip(self, image, label):
        """
        Flip image and label randomly.
        """
        r = np.random.rand(1)
        if r > 0.5:
144 145
            image = dataset.image.left_right_flip(image, is_color=True)
            label = dataset.image.left_right_flip(label, is_color=False)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        return image, label

    def random_scaling(self, image, label):
        """
        Scale image and label randomly.
        """
        scale = np.random.uniform(0.5, 2.0, 1)[0]
        h_new = int(image.shape[0] * scale)
        w_new = int(image.shape[1] * scale)
        image = cv2.resize(image, (w_new, h_new))
        label = cv2.resize(
            label, (w_new, h_new), interpolation=cv2.INTER_NEAREST)
        return image, label

    def padding_as(self, image, h, w, is_color):
        """
        Padding image.
        """
        pad_h = max(image.shape[0], h) - image.shape[0]
        pad_w = max(image.shape[1], w) - image.shape[1]
        if is_color:
            return np.pad(image, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
        else:
            return np.pad(image, ((0, pad_h), (0, pad_w)), 'constant')

W
whs 已提交
171 172 173 174 175 176 177 178 179 180 181
    def random_crop(self, im, out_shape, is_color=True):
        h, w = im.shape[:2]
        h_start = np.random.randint(0, h - out_shape[0] + 1)
        w_start = np.random.randint(0, w - out_shape[1] + 1)
        h_end, w_end = h_start + out_shape[0], w_start + out_shape[1]
        if is_color:
            im = im[h_start:h_end, w_start:w_end, :]
        else:
            im = im[h_start:h_end, w_start:w_end]
        return im

182 183 184 185 186 187 188 189 190 191 192
    def resize(self, image, label, out_size):
        """
        Resize image and label by padding or cropping.
        """
        ignore_label = IGNORE_LABEL
        label = label - ignore_label
        if len(label.shape) == 2:
            label = label[:, :, np.newaxis]
        combined = np.concatenate((image, label), axis=2)
        combined = self.padding_as(
            combined, out_size[0], out_size[1], is_color=True)
W
whs 已提交
193
        combined = self.random_crop(combined, out_size, is_color=True)
194 195 196 197 198 199 200 201
        image = combined[:, :, 0:3]
        label = combined[:, :, 3:4] + ignore_label
        return image, label

    def scale_label(self, label, factor):
        """
        Scale label according to factor.
        """
202 203
        h = label.shape[0] // factor
        w = label.shape[1] // factor
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        return cv2.resize(
            label, (h, w), interpolation=cv2.INTER_NEAREST)[:, :, np.newaxis]

    def mask(self, image, label0, label1, label2):
        """
        Get mask for valid pixels.
        """
        mask_sub1 = np.where(((label0 < (NUM_CLASSES + 1)) & (
            label0 != IGNORE_LABEL)).flatten())[0].astype("int32")
        mask_sub2 = np.where(((label1 < (NUM_CLASSES + 1)) & (
            label1 != IGNORE_LABEL)).flatten())[0].astype("int32")
        mask_sub4 = np.where(((label2 < (NUM_CLASSES + 1)) & (
            label2 != IGNORE_LABEL)).flatten())[0].astype("int32")
        return image.astype(
            "float32"), label0, mask_sub1, label1, mask_sub2, label2, mask_sub4


def train(batch_size=32, flip=True, scaling=True):
    """
    Cityscape training set reader.
    It returns a reader, in which each result is a batch with batch_size samples.

    :param batch_size: The batch size of each result return by the reader.
    :type batch_size: int
    :param flip: Whether flip images randomly.
    :type batch_size: bool
    :param scaling: Whether scale images randomly.
    :type batch_size: bool
    :return: Training reader.
    :rtype: callable
    """
    reader = DataGenerater(
        TRAIN_LIST, flip=flip, scaling=scaling).create_train_reader(batch_size)
    return reader


def test():
    """
    Cityscape validation set reader.
    It returns a reader, in which each result is a sample.

    :return: Training reader.
    :rtype: callable
    """
    reader = DataGenerater(TEST_LIST).create_test_reader()
    return reader


def infer(image_list=TEST_LIST):
    """
    Infer set reader.
    It returns a reader, in which each result is a sample.

    :param image_list: The image list file in which each line is a path of image to be infered.
    :type batch_size: str
    :return: Infer reader.
    :rtype: callable
    """
    reader = DataGenerater(image_list).create_test_reader()