AttGAN.py 16.0 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lvmengsi 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from network.AttGAN_network import AttGAN_model
from util import utility
import paddle.fluid as fluid
import sys
import time
import copy
import numpy as np


class GTrainer():
    def __init__(self, image_real, label_org, label_org_, label_trg, label_trg_,
                 cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = AttGAN_model()
            self.fake_img, self.rec_img = model.network_G(
                image_real, label_org_, label_trg_, cfg, name="generator")
            self.fake_img.persistable = True
            self.rec_img.persistable = True
            self.infer_program = self.program.clone(for_test=True)

            self.g_loss_rec = fluid.layers.mean(
                fluid.layers.abs(
                    fluid.layers.elementwise_sub(
                        x=image_real, y=self.rec_img)))
            self.pred_fake, self.cls_fake = model.network_D(
                self.fake_img, cfg, name="discriminator")
            #wgan
            if cfg.gan_mode == "wgan":
                self.g_loss_fake = -1 * fluid.layers.mean(self.pred_fake)
            #lsgan
            elif cfg.gan_mode == "lsgan":
                ones = fluid.layers.fill_constant_batch_size_like(
                    input=self.pred_fake,
                    shape=self.pred_fake.shape,
                    value=1.0,
                    dtype='float32')
                self.g_loss_fake = fluid.layers.mean(
                    fluid.layers.square(
                        fluid.layers.elementwise_sub(
                            x=self.pred_fake, y=ones)))

            self.g_loss_cls = fluid.layers.mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(self.cls_fake,
                                                               label_trg))
            self.g_loss = self.g_loss_fake + cfg.lambda_rec * self.g_loss_rec + cfg.lambda_cls * self.g_loss_cls

            self.g_loss_fake.persistable = True
            self.g_loss_rec.persistable = True
            self.g_loss_cls.persistable = True
L
lvmengsi 已提交
67 68 69
            lr = fluid.layers.piecewise_decay(
                boundaries=[99 * step_per_epoch],
                values=[cfg.g_lr, cfg.g_lr * 0.1])
L
lvmengsi 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith(
                        "generator"):
                    vars.append(var.name)
            self.param = vars
            optimizer = fluid.optimizer.Adam(
                learning_rate=lr, beta1=0.5, beta2=0.999, name="net_G")

            optimizer.minimize(self.g_loss, parameter_list=vars)


class DTrainer():
    def __init__(self, image_real, label_org, label_org_, label_trg, label_trg_,
                 cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        lr = cfg.d_lr
        with fluid.program_guard(self.program):
            model = AttGAN_model()
            self.fake_img, _ = model.network_G(
                image_real, label_org, label_trg_, cfg, name="generator")
            self.pred_real, self.cls_real = model.network_D(
                image_real, cfg, name="discriminator")
            self.pred_fake, _ = model.network_D(
                self.fake_img, cfg, name="discriminator")
            self.d_loss_cls = fluid.layers.mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(self.cls_real,
                                                               label_org))
            #wgan
            if cfg.gan_mode == "wgan":
                self.d_loss_fake = fluid.layers.reduce_mean(self.pred_fake)
                self.d_loss_real = -1 * fluid.layers.reduce_mean(self.pred_real)
                self.d_loss_gp = self.gradient_penalty(
                    model.network_D,
L
lvmengsi 已提交
104
                    image_real,
L
lvmengsi 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                    self.fake_img,
                    cfg=cfg,
                    name="discriminator")
                self.d_loss = self.d_loss_real + self.d_loss_fake + 1.0 * self.d_loss_cls + cfg.lambda_gp * self.d_loss_gp
            #lsgan
            elif cfg.gan_mode == "lsgan":
                ones = fluid.layers.fill_constant_batch_size_like(
                    input=self.pred_real,
                    shape=self.pred_real.shape,
                    value=1.0,
                    dtype='float32')
                self.d_loss_real = fluid.layers.mean(
                    fluid.layers.square(
                        fluid.layers.elementwise_sub(
                            x=self.pred_real, y=ones)))
                self.d_loss_fake = fluid.layers.mean(
                    fluid.layers.square(x=self.pred_fake))
L
lvmengsi 已提交
122 123 124 125 126 127 128
                self.d_loss_gp = self.gradient_penalty(
                    model.network_D,
                    image_real,
                    None,
                    cfg=cfg,
                    name="discriminator")
                self.d_loss = self.d_loss_real + self.d_loss_fake + 1.0 * self.d_loss_cls + cfg.lambda_gp * self.d_loss_gp
L
lvmengsi 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141

            self.d_loss_real.persistable = True
            self.d_loss_fake.persistable = True
            self.d_loss.persistable = True
            self.d_loss_cls.persistable = True
            self.d_loss_gp.persistable = True
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith(
                        "discriminator"):
                    vars.append(var.name)
            self.param = vars

L
lvmengsi 已提交
142 143 144
            lr = fluid.layers.piecewise_decay(
                boundaries=[99 * step_per_epoch],
                values=[cfg.g_lr, cfg.g_lr * 0.1])
L
lvmengsi 已提交
145 146 147 148 149 150 151
            optimizer = fluid.optimizer.Adam(
                learning_rate=lr, beta1=0.5, beta2=0.999, name="net_D")

            optimizer.minimize(self.d_loss, parameter_list=vars)

    def gradient_penalty(self, f, real, fake=None, cfg=None, name=None):
        def _interpolate(a, b=None):
L
lvmengsi 已提交
152 153 154 155 156 157 158 159 160 161 162
            if b is None:
                beta = fluid.layers.uniform_random_batch_size_like(
                    input=a, shape=a.shape, min=0.0, max=1.0)
                mean = fluid.layers.reduce_mean(
                    a, range(len(a.shape)), keep_dim=True)
                input_sub_mean = fluid.layers.elementwise_sub(a, mean, axis=0)
                var = fluid.layers.reduce_mean(
                    fluid.layers.square(input_sub_mean),
                    range(len(a.shape)),
                    keep_dim=True)
                b = beta * fluid.layers.sqrt(var) * 0.5 + a
L
lvmengsi 已提交
163 164 165
            shape = [a.shape[0]]
            alpha = fluid.layers.uniform_random_batch_size_like(
                input=a, shape=shape, min=0.0, max=1.0)
L
lvmengsi 已提交
166
            inner = (b - a) * alpha + a
L
lvmengsi 已提交
167 168 169 170 171 172 173 174 175 176 177 178
            return inner

        x = _interpolate(real, fake)

        pred, _ = f(x, cfg=cfg, name=name)
        if isinstance(pred, tuple):
            pred = pred[0]
        vars = []
        for var in fluid.default_main_program().list_vars():
            if fluid.io.is_parameter(var) and var.name.startswith(
                    "discriminator"):
                vars.append(var.name)
L
lvmengsi 已提交
179
        grad = fluid.gradients(pred, x, no_grad_set=vars)[0]
L
lvmengsi 已提交
180 181 182
        grad_shape = grad.shape
        grad = fluid.layers.reshape(
            grad, [-1, grad_shape[1] * grad_shape[2] * grad_shape[3]])
L
lvmengsi 已提交
183
        epsilon = 1e-16
L
lvmengsi 已提交
184 185
        norm = fluid.layers.sqrt(
            fluid.layers.reduce_sum(
L
lvmengsi 已提交
186
                fluid.layers.square(grad), dim=1) + epsilon)
L
lvmengsi 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        gp = fluid.layers.reduce_mean(fluid.layers.square(norm - 1.0))
        return gp


class AttGAN(object):
    def add_special_args(self, parser):
        parser.add_argument(
            '--g_lr',
            type=float,
            default=0.0002,
            help="the base learning rate of generator")
        parser.add_argument(
            '--d_lr',
            type=float,
            default=0.0002,
            help="the base learning rate of discriminator")
        parser.add_argument(
            '--c_dim',
            type=int,
            default=13,
            help="the number of attributes we selected")
        parser.add_argument(
            '--d_fc_dim',
            type=int,
            default=1024,
            help="the base fc dim in discriminator")
        parser.add_argument(
            '--lambda_cls',
            type=float,
            default=10.0,
            help="the coefficient of classification")
        parser.add_argument(
            '--lambda_rec',
            type=float,
            default=100.0,
            help="the coefficient of refactor")
        parser.add_argument(
            '--thres_int',
            type=float,
            default=0.5,
            help="thresh change of attributes")
        parser.add_argument(
            '--lambda_gp',
            type=float,
            default=10.0,
            help="the coefficient of gradient penalty")
        parser.add_argument(
            '--n_samples', type=int, default=16, help="batch size when testing")
        parser.add_argument(
            '--selected_attrs',
            type=str,
            default="Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young",
            help="the attributes we selected to change")
        parser.add_argument(
            '--n_layers',
            type=int,
            default=5,
            help="default layers in the network")
L
lvmengsi 已提交
245 246 247 248 249 250
        parser.add_argument(
            '--dis_norm',
            type=str,
            default=None,
            help="the normalization in discriminator, choose in [None, instance_norm]"
        )
L
lvmengsi 已提交
251 252 253 254 255 256 257

        return parser

    def __init__(self,
                 cfg=None,
                 train_reader=None,
                 test_reader=None,
L
lvmengsi 已提交
258 259
                 batch_num=1,
                 id2name=None):
L
lvmengsi 已提交
260 261 262 263
        self.cfg = cfg
        self.train_reader = train_reader
        self.test_reader = test_reader
        self.batch_num = batch_num
L
lvmengsi 已提交
264
        self.id2name = id2name
L
lvmengsi 已提交
265 266

    def build_model(self):
L
lvmengsi 已提交
267
        data_shape = [-1, 3, self.cfg.image_size, self.cfg.image_size]
L
lvmengsi 已提交
268 269 270 271 272 273 274 275 276 277 278

        image_real = fluid.layers.data(
            name='image_real', shape=data_shape, dtype='float32')
        label_org = fluid.layers.data(
            name='label_org', shape=[self.cfg.c_dim], dtype='float32')
        label_trg = fluid.layers.data(
            name='label_trg', shape=[self.cfg.c_dim], dtype='float32')
        label_org_ = fluid.layers.data(
            name='label_org_', shape=[self.cfg.c_dim], dtype='float32')
        label_trg_ = fluid.layers.data(
            name='label_trg_', shape=[self.cfg.c_dim], dtype='float32')
L
lvmengsi 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292

        py_reader = fluid.io.PyReader(
            feed_list=[image_real, label_org, label_trg],
            capacity=64,
            iterable=True,
            use_double_buffer=True)

        test_gen_trainer = GTrainer(image_real, label_org, label_org_,
                                    label_trg, label_trg_, self.cfg,
                                    self.batch_num)

        label_org_ = (label_org * 2.0 - 1.0) * self.cfg.thres_int
        label_trg_ = (label_trg * 2.0 - 1.0) * self.cfg.thres_int

L
lvmengsi 已提交
293 294 295 296 297 298 299
        gen_trainer = GTrainer(image_real, label_org, label_org_, label_trg,
                               label_trg_, self.cfg, self.batch_num)
        dis_trainer = DTrainer(image_real, label_org, label_org_, label_trg,
                               label_trg_, self.cfg, self.batch_num)

        # prepare environment
        place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace()
L
lvmengsi 已提交
300
        py_reader.decorate_batch_generator(self.train_reader, places=place)
L
lvmengsi 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        if self.cfg.init_model:
            utility.init_checkpoints(self.cfg, exe, gen_trainer, "net_G")
            utility.init_checkpoints(self.cfg, exe, dis_trainer, "net_D")

        ### memory optim
        build_strategy = fluid.BuildStrategy()
        build_strategy.enable_inplace = False

        gen_trainer_program = fluid.CompiledProgram(
            gen_trainer.program).with_data_parallel(
                loss_name=gen_trainer.g_loss.name,
                build_strategy=build_strategy)
        dis_trainer_program = fluid.CompiledProgram(
            dis_trainer.program).with_data_parallel(
                loss_name=dis_trainer.d_loss.name,
                build_strategy=build_strategy)

        t_time = 0

        for epoch_id in range(self.cfg.epoch):
            batch_id = 0
L
lvmengsi 已提交
325
            for data in py_reader():
L
lvmengsi 已提交
326 327
                s_time = time.time()
                # optimize the discriminator network
L
lvmengsi 已提交
328 329 330 331 332 333 334 335 336 337 338 339
                fetches = [
                    dis_trainer.d_loss.name,
                    dis_trainer.d_loss_real.name,
                    dis_trainer.d_loss_fake.name,
                    dis_trainer.d_loss_cls.name,
                    dis_trainer.d_loss_gp.name,
                ]
                d_loss, d_loss_real, d_loss_fake, d_loss_cls, d_loss_gp = exe.run(
                    dis_trainer_program, fetch_list=fetches, feed=data)

                if (batch_id + 1) % self.cfg.num_discriminator_time == 0:
                    # optimize the generator network
L
lvmengsi 已提交
340 341 342 343 344 345
                    d_fetches = [
                        gen_trainer.g_loss_fake.name,
                        gen_trainer.g_loss_rec.name,
                        gen_trainer.g_loss_cls.name, gen_trainer.fake_img.name
                    ]
                    g_loss_fake, g_loss_rec, g_loss_cls, fake_img = exe.run(
L
lvmengsi 已提交
346
                        gen_trainer_program, fetch_list=d_fetches, feed=data)
L
lvmengsi 已提交
347 348 349 350
                    print("epoch{}: batch{}: \n\
                         g_loss_fake: {}; g_loss_rec: {}; g_loss_cls: {}"
                          .format(epoch_id, batch_id, g_loss_fake[0],
                                  g_loss_rec[0], g_loss_cls[0]))
L
lvmengsi 已提交
351 352 353 354 355 356 357 358 359

                batch_time = time.time() - s_time
                t_time += batch_time
                if (batch_id + 1) % self.cfg.print_freq == 0:
                    print("epoch{}: batch{}:  \n\
                         d_loss: {}; d_loss_real: {}; d_loss_fake: {}; d_loss_cls: {}; d_loss_gp: {} \n\
                         Batch_time_cost: {}".format(epoch_id, batch_id, d_loss[
                        0], d_loss_real[0], d_loss_fake[0], d_loss_cls[0],
                                                     d_loss_gp[0], batch_time))
L
lvmengsi 已提交
360 361 362 363
                sys.stdout.flush()
                batch_id += 1

            if self.cfg.run_test:
L
lvmengsi 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376
                image_name = fluid.layers.data(
                    name='image_name',
                    shape=[self.cfg.n_samples],
                    dtype='int32')
                test_py_reader = fluid.io.PyReader(
                    feed_list=[image_real, label_org, label_trg, image_name],
                    capacity=32,
                    iterable=True,
                    use_double_buffer=True)
                test_py_reader.decorate_batch_generator(
                    self.test_reader, places=place)

                test_program = test_gen_trainer.infer_program
L
lvmengsi 已提交
377
                utility.save_test_image(epoch_id, self.cfg, exe, place,
L
lvmengsi 已提交
378 379
                                        test_program, test_gen_trainer,
                                        test_py_reader)
L
lvmengsi 已提交
380 381 382 383 384 385

            if self.cfg.save_checkpoints:
                utility.checkpoints(epoch_id, self.cfg, exe, gen_trainer,
                                    "net_G")
                utility.checkpoints(epoch_id, self.cfg, exe, dis_trainer,
                                    "net_D")