avazu_data_processer.py 11.4 KB
Newer Older
S
Superjom 已提交
1 2 3 4
import sys
import csv
import cPickle
import argparse
Y
yangyaming 已提交
5
import os
S
Superjom 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
import numpy as np

from utils import logger, TaskMode

parser = argparse.ArgumentParser(description="PaddlePaddle CTR example")
parser.add_argument(
    '--data_path', type=str, required=True, help="path of the Avazu dataset")
parser.add_argument(
    '--output_dir', type=str, required=True, help="directory to output")
parser.add_argument(
    '--num_lines_to_detect',
    type=int,
    default=500000,
    help="number of records to detect dataset's meta info")
parser.add_argument(
    '--test_set_size',
    type=int,
    default=10000,
    help="size of the validation dataset(default: 10000)")
parser.add_argument(
    '--train_size',
    type=int,
    default=100000,
    help="size of the trainset (default: 100000)")
args = parser.parse_args()
'''
The fields of the dataset are:

    0. id: ad identifier
    1. click: 0/1 for non-click/click
    2. hour: format is YYMMDDHH, so 14091123 means 23:00 on Sept. 11, 2014 UTC.
    3. C1 -- anonymized categorical variable
    4. banner_pos
    5. site_id
    6. site_domain
    7. site_category
    8. app_id
    9. app_domain
    10. app_category
    11. device_id
    12. device_ip
    13. device_model
    14. device_type
    15. device_conn_type
    16. C14-C21 -- anonymized categorical variables

S
fix pr  
Superjom 已提交
52
We will treat the following fields as categorical features:
S
Superjom 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

    - C1
    - banner_pos
    - site_category
    - app_category
    - device_type
    - device_conn_type

and some other features as id features:

    - id
    - site_id
    - app_id
    - device_id

The `hour` field will be treated as a continuous feature and will be transformed
to one-hot representation which has 24 bits.

This script will output 3 files:

1. train.txt
2. test.txt
3. infer.txt

all the files are for demo.
'''

feature_dims = {}

categorial_features = ('C1 banner_pos site_category app_category ' +
                       'device_type device_conn_type').split()

id_features = 'id site_id app_id device_id _device_id_cross_site_id'.split()


def get_all_field_names(mode=0):
    '''
    @mode: int
        0 for train, 1 for test
    @return: list of str
    '''
    return categorial_features + ['hour'] + id_features + ['click'] \
        if mode == 0 else []


class CategoryFeatureGenerator(object):
    '''
    Generator category features.

    Register all records by calling `register` first, then call `gen` to generate
    one-hot representation for a record.
    '''

    def __init__(self):
        self.dic = {'unk': 0}
        self.counter = 1

    def register(self, key):
        '''
        Register record.
        '''
        if key not in self.dic:
            self.dic[key] = self.counter
            self.counter += 1

    def size(self):
        return len(self.dic)

    def gen(self, key):
        '''
        Generate one-hot representation for a record.
        '''
        if key not in self.dic:
            res = self.dic['unk']
        else:
            res = self.dic[key]
        return [res]

    def __repr__(self):
        return '<CategoryFeatureGenerator %d>' % len(self.dic)


class IDfeatureGenerator(object):
    def __init__(self, max_dim, cross_fea0=None, cross_fea1=None):
        '''
        @max_dim: int
            Size of the id elements' space
        '''
        self.max_dim = max_dim
        self.cross_fea0 = cross_fea0
        self.cross_fea1 = cross_fea1

    def gen(self, key):
        '''
        Generate one-hot representation for records
        '''
        return [hash(key) % self.max_dim]

    def gen_cross_fea(self, fea1, fea2):
        key = str(fea1) + str(fea2)
        return self.gen(key)

    def size(self):
        return self.max_dim


class ContinuousFeatureGenerator(object):
    def __init__(self, n_intervals):
        self.min = sys.maxint
        self.max = sys.minint
        self.n_intervals = n_intervals

    def register(self, val):
        self.min = min(self.minint, val)
        self.max = max(self.maxint, val)

    def gen(self, val):
        self.len_part = (self.max - self.min) / self.n_intervals
        return (val - self.min) / self.len_part


# init all feature generators
fields = {}
for key in categorial_features:
    fields[key] = CategoryFeatureGenerator()
for key in id_features:
    # for cross features
    if 'cross' in key:
        feas = key[1:].split('_cross_')
        fields[key] = IDfeatureGenerator(10000000, *feas)
    # for normal ID features
    else:
        fields[key] = IDfeatureGenerator(10000)

# used as feed_dict in PaddlePaddle
field_index = dict((key, id)
                   for id, key in enumerate(['dnn_input', 'lr_input', 'click']))


def detect_dataset(path, topn, id_fea_space=10000):
    '''
    Parse the first `topn` records to collect meta information of this dataset.

    NOTE the records should be randomly shuffled first.
    '''
    # create categorical statis objects.
    logger.warning('detecting dataset')

    with open(path, 'rb') as csvfile:
        reader = csv.DictReader(csvfile)
        for row_id, row in enumerate(reader):
            if row_id > topn:
                break

            for key in categorial_features:
                fields[key].register(row[key])

    for key, item in fields.items():
        feature_dims[key] = item.size()

    feature_dims['hour'] = 24
    feature_dims['click'] = 1

    feature_dims['dnn_input'] = np.sum(
        feature_dims[key] for key in categorial_features + ['hour']) + 1
    feature_dims['lr_input'] = np.sum(feature_dims[key]
                                      for key in id_features) + 1
    return feature_dims


def load_data_meta(meta_path):
    '''
    Load dataset's meta infomation.
    '''
    feature_dims, fields = cPickle.load(open(meta_path, 'rb'))
    return feature_dims, fields


def concat_sparse_vectors(inputs, dims):
    '''
    Concaterate more than one sparse vectors into one.

    @inputs: list
        list of sparse vector
    @dims: list of int
        dimention of each sparse vector
    '''
    res = []
    assert len(inputs) == len(dims)
    start = 0
    for no, vec in enumerate(inputs):
        for v in vec:
            res.append(v + start)
        start += dims[no]
    return res


class AvazuDataset(object):
    '''
    Load AVAZU dataset as train set.
    '''

    def __init__(self,
                 train_path,
                 n_records_as_test=-1,
                 fields=None,
                 feature_dims=None):
        self.train_path = train_path
        self.n_records_as_test = n_records_as_test
        self.fields = fields
        # default is train mode.
        self.mode = TaskMode.create_train()

        self.categorial_dims = [
            feature_dims[key] for key in categorial_features + ['hour']
        ]
        self.id_dims = [feature_dims[key] for key in id_features]

    def train(self):
        '''
        Load trainset.
        '''
        logger.info("load trainset from %s" % self.train_path)
        self.mode = TaskMode.create_train()
        with open(self.train_path) as f:
            reader = csv.DictReader(f)

            for row_id, row in enumerate(reader):
                # skip top n lines
                if self.n_records_as_test > 0 and row_id < self.n_records_as_test:
                    continue

                rcd = self._parse_record(row)
                if rcd:
                    yield rcd

    def test(self):
        '''
        Load testset.
        '''
        logger.info("load testset from %s" % self.train_path)
        self.mode = TaskMode.create_test()
        with open(self.train_path) as f:
            reader = csv.DictReader(f)

            for row_id, row in enumerate(reader):
                # skip top n lines
                if self.n_records_as_test > 0 and row_id > self.n_records_as_test:
                    break

                rcd = self._parse_record(row)
                if rcd:
                    yield rcd

    def infer(self):
        '''
        Load inferset.
        '''
        logger.info("load inferset from %s" % self.train_path)
        self.mode = TaskMode.create_infer()
        with open(self.train_path) as f:
            reader = csv.DictReader(f)

            for row_id, row in enumerate(reader):
                rcd = self._parse_record(row)
                if rcd:
                    yield rcd

    def _parse_record(self, row):
        '''
        Parse a CSV row and get a record.
        '''
        record = []
        for key in categorial_features:
            record.append(self.fields[key].gen(row[key]))
        record.append([int(row['hour'][-2:])])
        dense_input = concat_sparse_vectors(record, self.categorial_dims)

        record = []
        for key in id_features:
            if 'cross' not in key:
                record.append(self.fields[key].gen(row[key]))
            else:
                fea0 = self.fields[key].cross_fea0
                fea1 = self.fields[key].cross_fea1
                record.append(
                    self.fields[key].gen_cross_fea(row[fea0], row[fea1]))

        sparse_input = concat_sparse_vectors(record, self.id_dims)

        record = [dense_input, sparse_input]

        if not self.mode.is_infer():
            record.append(list((int(row['click']), )))
        return record


def ids2dense(vec, dim):
    return vec


def ids2sparse(vec):
    return ["%d:1" % x for x in vec]


detect_dataset(args.data_path, args.num_lines_to_detect)
dataset = AvazuDataset(
    args.data_path,
    args.test_set_size,
    fields=fields,
    feature_dims=feature_dims)

output_trainset_path = os.path.join(args.output_dir, 'train.txt')
output_testset_path = os.path.join(args.output_dir, 'test.txt')
output_infer_path = os.path.join(args.output_dir, 'infer.txt')
output_meta_path = os.path.join(args.output_dir, 'data.meta.txt')

with open(output_trainset_path, 'w') as f:
    for id, record in enumerate(dataset.train()):
        if id and id % 10000 == 0:
            logger.info("load %d records" % id)
        if id > args.train_size:
            break
        dnn_input, lr_input, click = record
        dnn_input = ids2dense(dnn_input, feature_dims['dnn_input'])
        lr_input = ids2sparse(lr_input)
        line = "%s\t%s\t%d\n" % (' '.join(map(str, dnn_input)),
                                 ' '.join(map(str, lr_input)), click[0])
        f.write(line)
    logger.info('write to %s' % output_trainset_path)

with open(output_testset_path, 'w') as f:
    for id, record in enumerate(dataset.test()):
        dnn_input, lr_input, click = record
        dnn_input = ids2dense(dnn_input, feature_dims['dnn_input'])
        lr_input = ids2sparse(lr_input)
        line = "%s\t%s\t%d\n" % (' '.join(map(str, dnn_input)),
                                 ' '.join(map(str, lr_input)), click[0])
        f.write(line)
    logger.info('write to %s' % output_testset_path)

with open(output_infer_path, 'w') as f:
    for id, record in enumerate(dataset.infer()):
        dnn_input, lr_input = record
        dnn_input = ids2dense(dnn_input, feature_dims['dnn_input'])
        lr_input = ids2sparse(lr_input)
        line = "%s\t%s\n" % (' '.join(map(str, dnn_input)),
                             ' '.join(map(str, lr_input)), )
        f.write(line)
        if id > args.test_set_size:
            break
    logger.info('write to %s' % output_infer_path)

with open(output_meta_path, 'w') as f:
    lines = [
        "dnn_input_dim: %d" % feature_dims['dnn_input'],
        "lr_input_dim: %d" % feature_dims['lr_input']
    ]
    f.write('\n'.join(lines))
    logger.info('write data meta into %s' % output_meta_path)