reader.py 13.9 KB
Newer Older
P
Peng Li 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
import sys
import random
from itertools import izip
import json
import traceback

from datapoint import DataPoint, Evidence, EecommFeatures
import utils
from utils import logger

__all__ = ["Q_IDS", "E_IDS", "LABELS", "QE_COMM", "EE_COMM",
           "Q_IDS_STR", "E_IDS_STR", "LABELS_STR", "QE_COMM_STR", "EE_COMM_STR",
           "Settings", "create_reader"]

# slot names
Q_IDS_STR = "q_ids"
E_IDS_STR = "e_ids"
LABELS_STR = "labels"
QE_COMM_STR = "qe.comm"
EE_COMM_STR = "ee.comm"

Q_IDS = 0
E_IDS = 1
LABELS = 2
QE_COMM = 3
EE_COMM = 4


NO_ANSWER = "no_answer"


class Settings(object):
    """
    class for storing settings
    """
    def __init__(self,
                 vocab,
                 is_training,
                 label_schema="BIO2",
                 negative_sample_ratio=0.2,
                 hit_ans_negative_sample_ratio=0.25,
                 keep_first_b=False,
                 seed=31425926):
        """
        Init function

        :param vocab: word dict
        :type vocab: dict
        :param is_training: True for training
        :type is_training: bool
        :param label_schema: label schema, valid values are BIO and BIO2,
            the default value is BIO2
        :type label_schema: str
        :param negative_sample_ratio: the ratio of negative samples used in
            training, the default value is 0.2
        :type negative_sample_ratio: float
        :param hit_ans_negative_sample_ratio: the ratio of negative samples 
            that contain golden answer string, the default value is 0.25
        :type hit_ans_negative_sample_ratio: float
        :param keep_first_b: only keep the first B in golden tag sequence,
            the default value is False
        :type keep_first_b: bool
        :param seed: random seed, the default value is 31425926
        :type seed: int
        """
        self.negative_sample_ratio = negative_sample_ratio
        self.hit_ans_negative_sample_ratio = hit_ans_negative_sample_ratio
        self.keep_first_b = keep_first_b
        self.is_training = is_training
        self.vocab = vocab

        # set up label schema
        if label_schema == "BIO":
            B, I, O1, O2 = 0, 1, 2, 2
        elif label_schema == "BIO2":
            B, I, O1, O2 = 0, 1, 2, 3
        else:
            raise ValueError("label_schema should be BIO/BIO2") 
        self.B, self.I, self.O1, self.O2 = B, I, O1, O2
        self.label_map = {"B":B, "I":I, "O1":O1, "O2":O2,
                          "b":B, "i":I, "o1":O1, "o2":O2}
        self.label_num = len(set((B, I, O1, O2)))

        # id for OOV
        self.oov_id = 0
        
        # set up random seed
        random.seed(seed)

        # booking message
        logger.info("negative_sample_ratio: %f", negative_sample_ratio)
        logger.info("hit_ans_negative_sample_ratio: %f",
                    hit_ans_negative_sample_ratio)
        logger.info("keep_first_b: %s", keep_first_b)
        logger.info("data reader random seed: %d", seed)

    
class SampleStream(object):
    def __init__(self, filename, settings):
        self.filename = filename
        self.settings = settings

    def __iter__(self):
        return self.load_and_filter_samples(self.filename)
    
    def load_and_filter_samples(self, filename):
        def remove_extra_b(labels):
            if labels.count(self.settings.B) <= 1: return

            i = 0
            # find the first B
            while i < len(labels) and labels[i] == self.settings.O1:
                i += 1
            i += 1 # skip B
            # skip the following Is
            while i < len(labels) and labels[i] == self.settings.I:
                i += 1
            # change all the other tags to O2
            while i < len(labels):
                labels[i] = self.settings.O2
                i += 1

        def filter_and_preprocess_evidences(evidences):
            for i, evi in enumerate(evidences):
                # convert golden labels to labels ids
                if Evidence.GOLDEN_LABELS in evi:
                    labels = [self.settings.label_map[l] \
                                for l in evi[Evidence.GOLDEN_LABELS]]
                else:
                    labels = [self.settings.O1] * len(evi[Evidence.E_TOKENS])

                # determine the current evidence is negative or not
                answer_list = evi[Evidence.GOLDEN_ANSWERS]
                is_negative = len(answer_list) == 1 \
                                and "".join(answer_list[0]).lower() == NO_ANSWER

                # drop positive evidences that do not contain golden answer
                # matches in training
                is_all_o1 = labels.count(self.settings.O1) == len(labels)
                if self.settings.is_training and is_all_o1 and not is_negative:
                    evidences[i] = None # dropped
                    continue

                if self.settings.keep_first_b:
                    remove_extra_b(labels)
                evi[Evidence.GOLDEN_LABELS] = labels

        def get_eecom_feats_list(cur_sample_is_negative,
                                 eecom_feats_list,
                                 evidences):
            if not self.settings.is_training:
                 return [item[EecommFeatures.EECOMM_FEATURES] \
                            for item in eecom_feats_list]

            positive_eecom_feats_list = []
            negative_eecom_feats_list = []
            
            for eecom_feats_, other_evi in izip(eecom_feats_list, evidences):
                if not other_evi: continue

                eecom_feats = eecom_feats_[EecommFeatures.EECOMM_FEATURES]
                if not eecom_feats: continue

                other_evi_type = eecom_feats_[EecommFeatures.OTHER_E_TYPE]
                if cur_sample_is_negative and \
                        other_evi_type != Evidence.POSITIVE:
                    continue

                if other_evi_type == Evidence.POSITIVE:
                    positive_eecom_feats_list.append(eecom_feats)
                else:
                    negative_eecom_feats_list.append(eecom_feats)

            eecom_feats_list = positive_eecom_feats_list
            if negative_eecom_feats_list:
                eecom_feats_list += [negative_eecom_feats_list]
            
            return eecom_feats_list

        def process_tokens(data, tok_key):
            ids = [self.settings.vocab.get(token, self.settings.oov_id) \
                        for token in data[tok_key]]
            return ids

        def process_evi(q_ids, evi, evidences):
            e_ids = process_tokens(evi, Evidence.E_TOKENS)

            labels = evi[Evidence.GOLDEN_LABELS]
            qe_comm = evi[Evidence.QECOMM_FEATURES]
            sample_type = evi[Evidence.TYPE]

            ret = [None] *  5
            ret[Q_IDS] = q_ids
            ret[E_IDS] = e_ids
            ret[LABELS] = labels
            ret[QE_COMM] = qe_comm

            eecom_feats_list = get_eecom_feats_list(
                                    sample_type != Evidence.POSITIVE,
                                    evi[Evidence.EECOMM_FEATURES_LIST],
                                    evidences)
            if not eecom_feats_list:
                return None
            else:
                ret[EE_COMM] = eecom_feats_list
                return ret

        with utils.DotBar(utils.open_file(filename)) as f_:
            for q_idx, line in enumerate(f_):
                # parse json line
                try:
                    data = json.loads(line)
                except Exception:
                    logger.fatal("ERROR LINE: %s", line.strip())
                    traceback.print_exc()
                    continue

                # convert question tokens to ids
                q_ids = process_tokens(data, DataPoint.Q_TOKENS)
    
                # process evidences
                evidences = data[DataPoint.EVIDENCES]
                filter_and_preprocess_evidences(evidences)
                for evi in evidences:
                    if not evi: continue
                    sample = process_evi(q_ids, evi, evidences)
                    if sample: yield q_idx, sample, evi[Evidence.TYPE]

class DataReader(object):
    def __iter__(self):
        return self

    def _next(self):
        raise NotImplemented()
    
    def next(self):
        data_point = self._next()
        return self.post_process_sample(data_point)

    def post_process_sample(self, sample):
        ret = list(sample)

        # choose eecom features randomly
        eecom_feats = random.choice(sample[EE_COMM])
        if not isinstance(eecom_feats[0], int):
            # the other evidence is a negative evidence
            eecom_feats = random.choice(eecom_feats)
        ret[EE_COMM] = eecom_feats

        return ret


class TrainingDataReader(DataReader):
    def __init__(self,
                 sample_stream,
                 negative_ratio,
                 hit_ans_negative_ratio):
        super(TrainingDataReader, self).__init__()
        self.positive_data = []
        self.hit_ans_negative_data = []
        self.other_negative_data = []

        self.negative_ratio = negative_ratio
        self.hit_ans_negative_ratio = hit_ans_negative_ratio

        self.p_idx = 0
        self.hit_idx = 0
        self.other_idx = 0

        self.load_samples(sample_stream)

    def add_data(self, positive, hit_negative, other_negative):
        if not positive: return
        self.positive_data.extend(positive)
        for samples, target_list in \
                zip((hit_negative, other_negative),
                    (self.hit_ans_negative_data, self.other_negative_data)):
            if not samples: continue
            # `0" is an index, further refer to _next_negative_data()
            target_list.append([samples, 0])

    def load_samples(self, sample_stream):
        logger.info("loading data...")
        last_q_id, positive, hit_negative, other_negative = None, [], [], []
        for q_id, sample, type_ in sample_stream:
            if not last_q_id and q_id != last_q_id:
                self.add_data(positive, hit_negative, other_negative)
                positive, hit_negative, other_negative = [], [], []

            last_q_id = q_id
            if type_ == Evidence.POSITIVE:
                positive.append(sample)
            elif type_ == Evidence.HIT_ANS_NEGATIVE:
                hit_negative.append(sample)
            elif type_ == Evidence.OTHER_NEGATIVE:
                other_negative.append(sample)
            else:
                raise ValueError("wrong type: %s" % str(type_))
        self.add_data(positive, hit_negative, other_negative)

        # we are not sure whether the input data is shuffled or not
        # so we shuffle them
        random.shuffle(self.positive_data)
        random.shuffle(self.hit_ans_negative_data)
        random.shuffle(self.other_negative_data)

        # set thresholds
        if len(self.positive_data) == 0:
            logger.fatal("zero positive sample")
            raise ValueError("zero positive sample")
            
        zero_hit = len(self.hit_ans_negative_data) == 0 
        zero_other = len(self.other_negative_data) == 0

        if zero_hit and zero_other:
            logger.fatal("zero negative sample")
            raise ValueError("zero negative sample")

        if zero_hit:
            logger.warning("zero hit_ans_negative sample")
            self.hit_ans_neg_threshold = 0
        else:
            self.hit_ans_neg_threshold = \
                self.negative_ratio * self.hit_ans_negative_ratio

        self.other_neg_threshold = self.negative_ratio
        if zero_other:
            logger.warning("zero other_negative sample")
            self.hit_ans_neg_threshold = self.negative_ratio
        logger.info("loaded")

    def next_positive_data(self):
        if self.p_idx >= len(self.positive_data):
            random.shuffle(self.positive_data)
            self.p_idx = 0

        self.p_idx += 1
        return self.positive_data[self.p_idx-1]

    def _next_negative_data(self, idx, negative_data):
        if idx >= len(negative_data):
            random.shuffle(negative_data)
            idx = 0

        # a negative evidence is sampled in two steps: 
        # step 1: sample a question uniformly
        # step 2: sample a negative evidence corresponding to the question
        #         uniformly
        # bundle -> (sample, idx)
        bundle = negative_data[idx]
        if bundle[1] >= len(bundle[0]):
            random.shuffle(bundle[0])
            bundle[1] = 0
        bundle[1] += 1
        return idx+1, bundle[0][bundle[1]-1]

    def next_hit_ans_negative_data(self):
        self.hit_idx, data = self._next_negative_data(
                self.hit_idx, self.hit_ans_negative_data)
        return data

    def next_other_negative_data(self):
        self.other_idx, data = self._next_negative_data(
                self.other_idx, self.other_negative_data)
        return data

    def _next(self):
        rand = random.random()
        if rand <= self.hit_ans_neg_threshold:
            return self.next_hit_ans_negative_data()
        elif rand < self.other_neg_threshold:
            return self.next_other_negative_data()
        else:
            return self.next_positive_data()


class TestDataReader(DataReader):
    def __init__(self, sample_stream):
        super(TestDataReader, self).__init__()
        self.data_generator = iter(sample_stream)

    def _next(self):
        q_idx, sample, type_ = self.data_generator.next()
        return sample


def create_reader(filename, settings, samples_per_pass=sys.maxint):
    if settings.is_training:
        training_reader = TrainingDataReader(
                SampleStream(filename, settings),
                settings.negative_sample_ratio,
                settings.hit_ans_negative_sample_ratio)

        def wrapper():
            for i, data in izip(xrange(samples_per_pass), training_reader):
                yield data
        return wrapper
    else:
        def wrapper():
            sample_stream = SampleStream(filename, settings)
            return TestDataReader(sample_stream)
        return wrapper