xception.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
import paddle.v2 as paddle

__all__ = ['xception']


def img_separable_conv_bn(name, input, num_channels, num_out_channels,
                          filter_size, stride, padding, act):
    conv = paddle.networks.img_separable_conv(
        name=name,
        input=input,
        num_channels=num_channels,
        num_out_channels=num_out_channels,
        filter_size=filter_size,
        stride=stride,
        padding=padding,
        act=paddle.activation.Linear())
    norm = paddle.layer.batch_norm(name=name + '_norm', input=conv, act=act)
    return norm


def img_conv_bn(name, input, num_channels, num_filters, filter_size, stride,
                padding, act):
    conv = paddle.layer.img_conv(
        name=name,
        input=input,
        num_channels=num_channels,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=padding,
        act=paddle.activation.Linear())
    norm = paddle.layer.batch_norm(name=name + '_norm', input=conv, act=act)
    return norm


def conv_block0(input,
                group,
                num_channels,
                num_filters,
                num_filters2=None,
                filter_size=3,
                pool_padding=0,
                entry_relu=True):
    if num_filters2 is None:
        num_filters2 = num_filters

    if entry_relu:
        act_input = paddle.layer.mixed(
            input=paddle.layer.identity_projection(input=input),
            act=paddle.activation.Relu())
    else:
        act_input = input
    conv0 = img_separable_conv_bn(
        name='xception_block{0}_conv0'.format(group),
        input=act_input,
        num_channels=num_channels,
        num_out_channels=num_filters,
        filter_size=filter_size,
        stride=1,
        padding=(filter_size - 1) / 2,
        act=paddle.activation.Relu())
    conv1 = img_separable_conv_bn(
        name='xception_block{0}_conv1'.format(group),
        input=conv0,
        num_channels=num_filters,
        num_out_channels=num_filters2,
        filter_size=filter_size,
        stride=1,
        padding=(filter_size - 1) / 2,
        act=paddle.activation.Linear())
    pool0 = paddle.layer.img_pool(
        name='xception_block{0}_pool'.format(group),
        input=conv1,
        pool_size=3,
        stride=2,
        padding=pool_padding,
        num_channels=num_filters2,
        pool_type=paddle.pooling.CudnnMax())

    shortcut = img_conv_bn(
        name='xception_block{0}_shortcut'.format(group),
        input=input,
        num_channels=num_channels,
        num_filters=num_filters2,
        filter_size=1,
        stride=2,
        padding=0,
        act=paddle.activation.Linear())

    return paddle.layer.addto(
        input=[pool0, shortcut], act=paddle.activation.Linear())


def conv_block1(input, group, num_channels, num_filters, filter_size=3):
    act_input = paddle.layer.mixed(
        input=paddle.layer.identity_projection(input=input),
        act=paddle.activation.Relu())
    conv0 = img_separable_conv_bn(
        name='xception_block{0}_conv0'.format(group),
        input=act_input,
        num_channels=num_channels,
        num_out_channels=num_filters,
        filter_size=filter_size,
        stride=1,
        padding=(filter_size - 1) / 2,
        act=paddle.activation.Relu())
    conv1 = img_separable_conv_bn(
        name='xception_block{0}_conv1'.format(group),
        input=conv0,
        num_channels=num_filters,
        num_out_channels=num_filters,
        filter_size=filter_size,
        stride=1,
        padding=(filter_size - 1) / 2,
        act=paddle.activation.Relu())
    conv2 = img_separable_conv_bn(
        name='xception_block{0}_conv2'.format(group),
        input=conv1,
        num_channels=num_filters,
        num_out_channels=num_filters,
        filter_size=filter_size,
        stride=1,
        padding=(filter_size - 1) / 2,
        act=paddle.activation.Linear())

    shortcut = input
    return paddle.layer.addto(
        input=[conv2, shortcut], act=paddle.activation.Linear())


def xception(input, class_dim):
    conv = img_conv_bn(
        name='xception_conv0',
        input=input,
        num_channels=3,
        num_filters=32,
        filter_size=3,
        stride=2,
        padding=1,
        act=paddle.activation.Relu())
    conv = img_conv_bn(
        name='xception_conv1',
        input=conv,
        num_channels=32,
        num_filters=64,
        filter_size=3,
        stride=1,
        padding=1,
        act=paddle.activation.Relu())
    conv = conv_block0(
        input=conv, group=2, num_channels=64, num_filters=128, entry_relu=False)
    conv = conv_block0(input=conv, group=3, num_channels=128, num_filters=256)
    conv = conv_block0(input=conv, group=4, num_channels=256, num_filters=728)
    for group in range(5, 13):
        conv = conv_block1(
            input=conv, group=group, num_channels=728, num_filters=728)
    conv = conv_block0(
        input=conv,
        group=13,
        num_channels=728,
        num_filters=728,
        num_filters2=1024)
    conv = img_separable_conv_bn(
        name='xception_conv14',
        input=conv,
        num_channels=1024,
        num_out_channels=1536,
        filter_size=3,
        stride=1,
        padding=1,
        act=paddle.activation.Relu())
    conv = img_separable_conv_bn(
        name='xception_conv15',
        input=conv,
        num_channels=1536,
        num_out_channels=2048,
        filter_size=3,
        stride=1,
        padding=1,
        act=paddle.activation.Relu())
    pool = paddle.layer.img_pool(
        name='xception_global_pool',
        input=conv,
        pool_size=7,
        stride=1,
        num_channels=2048,
        pool_type=paddle.pooling.CudnnAvg())
188 189 190 191
    out = paddle.layer.fc(name='xception_fc',
                          input=pool,
                          size=class_dim,
                          act=paddle.activation.Softmax())
192
    return out