house_price.local.template 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
[DEFAULT]
sample_seed: 1234
# The value in `DEFAULT` section will be referenced by other sections.
# For convinence, we will put the variables which changes frequently here and 
# let other section refer them

# Input settings
dataset_name: HousePrice
max_house_num: 100
max_public_num: 100

batch_shuffle: False
CUDA_VISIBLE_DEVICES: 0
FLAGS_fraction_of_gpu_memory_to_use: 0.8
# Input settings
#reader: dataset |  pyreader | async | datafeed | sync
#data_reader: pyreader
data_reader: datafeed
dataset_mode: Memory
#local-cpu | local-gpu 
platform: local-gpu
#platform: local-cpu
dis_radius: 1.0
avg_eval: False
with_car_dis: False
with_house_attr: False

bj_batch_size: 5256
#bj_batch_size: 7573
#bj_batch_size: 423
sh_batch_size: 8126
#sh_batch_size: 11604
#sh_batch_size: 822
gz_batch_size: 4560
#gz_batch_size: 6508
#gz_batch_size: 367
sz_batch_size: 2693
#sz_batch_size: 3849
#sz_batch_size: 192

city_name: <c>
num_samples_train: ${DEFAULT:<c>_batch_size}
train_batch_size: ${DEFAULT:<c>_batch_size}
#train_batch_size: 2
num_samples_eval: 10
eval_batch_size: 10

kv_path: None

# Model settings
model_name: HousePrice
preprocessing_name: None 
file_pattern: part-
num_in_dimension: 3
num_out_dimension: 1

# Learning options
max_number_of_steps: None
init_learning_rate: 0.2
emb_lr: ${DEFAULT:init_learning_rate}
fc_lr: ${DEFAULT:init_learning_rate}
base_lr: ${DEFAULT:init_learning_rate}

[Convert]
# The name of the dataset to convert
dataset_name: ${DEFAULT:dataset_name}

#dataset_dir: ${DEFAULT:dataset_dir}
dataset_dir: stream

# The output Records file name prefix.
dataset_split_name: train

# The number of Records per shard
num_per_shard: 100000

# The dimensions of net input vectors, it is just used by svm dataset
# which of input are sparse tensors now
num_in_dimension: ${DEFAULT:num_in_dimension}

# The output file name pattern with two placeholders ("%s" and "%d"), 
# it must correspond to the glob `file_pattern' in Train and Evaluate
# config sections


[Train]
#######################
#  Dataset Configure  #
#######################
# The name of the dataset to load
dataset_name: ${DEFAULT:dataset_name}

# The directory where the dataset files are stored
dataset_dir:  ${DEFAULT:dataset_dir}

file_list: ../tmp/data/poi/raw/<c>/poi_sample.train

# dataset_split_name
dataset_split_name: train

# The glob pattern for data path, `file_pattern' must contain only one "%s" 
# which is the placeholder for split name (such as 'train', 'validation')
file_pattern: ${DEFAULT:file_pattern}

# The file type text or record
file_type: record

# kv path, used in image_sim
kv_path: ${DEFAULT:kv_path}

# The number of input sample for training
num_samples: ${DEFAULT:num_samples_train}

# The number of parallel readers that read data from the dataset
num_readers: 2

# The number of threads used to create the batches
num_preprocessing_threads: 4

# Number of epochs from dataset source
num_epochs_input: 200

###########################
#  Basic Train Configure  #
###########################
# Directory where checkpoints and event logs are written to.
train_dir: ../tmp/model/house_price/save_model/${DEFAULT:city_name}

# The max number of ckpt files to store variables
save_max_to_keep: 40

# The frequency with which the model is saved, in steps.
save_model_steps: 5

# The name of the architecture to train
model_name: ${DEFAULT:model_name}

# The dimensions of net input vectors, it is just used by svm dataset
# which of input are sparse tensors now
num_in_dimension: ${DEFAULT:num_in_dimension}

# The dimensions of net output vector, it will be num of classes in image classify task 
num_out_dimension: ${DEFAULT:num_out_dimension}

#####################################
#  Training Optimization Configure  #
#####################################
# The number of samples in each batch
batch_size: ${DEFAULT:train_batch_size}

# The maximum number of training steps
max_number_of_steps: ${DEFAULT:max_number_of_steps}

# The weight decay on the model weights
#weight_decay: 0.00000001
weight_decay: None

# The decay to use for the moving average. If left as None, then moving averages are not used
moving_average_decay: None

# ***************** learning rate options ***************** #
# Initial learning rate
init_learning_rate: ${DEFAULT:init_learning_rate}

# Specifies how the learning rate is decayed. One of "fixed", "exponential" or "polynomial"
learning_rate_decay_type: fixed 

# Learning rate decay factor
learning_rate_decay_factor: 0.1

num_learning_rate_warmup_epochs: None

# The minimal end learning rate used by a polynomial decay learning rate
end_learning_rate: 0.0001

# Number of epochs after which learning rate decays
num_epochs_per_decay: 10

# A boolean, whether or not it should cycle beyond decay_steps
learning_rate_polynomial_decay_cycle: False

# ******************* optimizer options ******************* #
# The name of the optimizer, one of the following:
# "adadelta", "adagrad", "adam", "ftrl", "momentum", "sgd" or "rmsprop"
#optimizer: weight_decay_adam
optimizer: adam
#optimizer: sgd
# Epsilon term for the optimizer, used for adadelta, adam, rmsprop
opt_epsilon: 1e-6

# conf for adadelta
# The decay rate for adadelta
adadelta_rho: 0.95
# Starting value for the AdaGrad accumulators
adagrad_initial_accumulator_value: 0.1

# conf for adam
# The exponential decay rate for the 1st moment estimates
adam_beta1: 0.9
# The exponential decay rate for the 2nd moment estimates
adam_beta2: 0.999

adam_weight_decay: 0.01
#adam_exclude_from_weight_decay: LayerNorm,layer_norm,bias

# conf for ftrl
# The learning rate power
ftrl_learning_rate_power: -0.1
# Starting value for the FTRL accumulators
ftrl_initial_accumulator_value: 0.1
# The FTRL l1 regularization strength
ftrl_l1: 0.0
# The FTRL l2 regularization strength
ftrl_l2: 0.01

# conf for momentum
# The momentum for the MomentumOptimizer and RMSPropOptimizer
momentum: 0.9

# conf for rmsprop
# Decay term for RMSProp
rmsprop_decay: 0.9

# Number of model clones to deploy
num_gpus: 1

# The frequency with which logs are trace.
trace_every_n_steps: 5


[Evaluate]
#######################
#  Dataset Configure  #
#######################
# The name of the dataset to load
dataset_name: ${DEFAULT:dataset_name}

# The name of the train/test split
#dataset_split_name: validation
dataset_split_name: train

# The glob pattern for data path, `file_pattern' must contain only one "%s" 
# which is the placeholder for split name (such as 'train', 'validation')
file_pattern: ${DEFAULT:file_pattern}

#reader: dataset |  pyreader | async | datafeed | sync
data_reader: datafeed

#local-cpu | local-gpu 
platform: local-cpu

file_list: ../tmp/data/poi/raw/<c>/poi_sample.test

# The file type or record
file_type: text

# kv path, used in image_sim
kv_path: ${DEFAULT:kv_path}

# The number of input sample for evaluation
num_samples: ${DEFAULT:num_samples_eval}

# The number of parallel readers that read data from the dataset
num_readers: 2

# The number of threads used to create the batches
num_preprocessing_threads: 2

# Number of epochs from dataset source
num_epochs_input: 1

# The name of the architecture to evaluate
model_name: ${DEFAULT:model_name}

# The dimensions of net input vectors, it is just used by svm dataset
# which of input are sparse tensors now
num_in_dimension: ${DEFAULT:num_in_dimension}

# The dimensions of net output vector, it will be num of classes in image classify task 
num_out_dimension: ${DEFAULT:num_out_dimension}

# Directory where the results are saved to
A
anpark 已提交
283
eval_dir: ${Train:train_dir}/checkpoint_1
284 285 286

# The number of samples in each batch
batch_size: ${DEFAULT:eval_batch_size}