squad_reader.py 29.2 KB
Newer Older
0
0YuanZhang0 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run BERT on SQuAD 1.1 and SQuAD 2.0."""

import re
import six
import sys
import math
import json
import random
import collections
import gc
import numpy as np

sys.path.append('.')
import squad_utils
from data_utils import SEP_ID, CLS_ID, VOCAB_SIZE

import sentencepiece as spm
from prepro_utils import preprocess_text, encode_ids, encode_pieces, printable_text

SPIECE_UNDERLINE = u'▁'

SEG_ID_P   = 0
SEG_ID_Q   = 1
SEG_ID_CLS = 2
SEG_ID_PAD = 3

class SquadExample(object):
  """A single training/test example for simple sequence classification.
     For examples without an answer, the start and end position are -1.
  """

  def __init__(self,
               qas_id,
               question_text,
               paragraph_text,
               orig_answer_text=None,
               start_position=None,
               is_impossible=False):
    self.qas_id = qas_id
    self.question_text = question_text
    self.paragraph_text = paragraph_text
    self.orig_answer_text = orig_answer_text
    self.start_position = start_position
    self.is_impossible = is_impossible

  def __str__(self):
    return self.__repr__()

  def __repr__(self):
    s = ""
    s += "qas_id: %s" % (printable_text(self.qas_id))
    s += ", question_text: %s" % (
        printable_text(self.question_text))
    s += ", paragraph_text: [%s]" % (" ".join(self.paragraph_text))
    if self.start_position:
      s += ", start_position: %d" % (self.start_position)
    if self.start_position:
      s += ", is_impossible: %r" % (self.is_impossible)
    return s

class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               unique_id,
               example_index,
               doc_span_index,
               tok_start_to_orig_index,
               tok_end_to_orig_index,
               token_is_max_context,
               input_ids,
               input_mask,
               p_mask,
               segment_ids,
               paragraph_len,
               cls_index,
               start_position=None,
               end_position=None,
               is_impossible=None):
    self.unique_id = unique_id
    self.example_index = example_index
    self.doc_span_index = doc_span_index
    self.tok_start_to_orig_index = tok_start_to_orig_index
    self.tok_end_to_orig_index = tok_end_to_orig_index
    self.token_is_max_context = token_is_max_context
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.p_mask = p_mask
    self.segment_ids = segment_ids
    self.paragraph_len = paragraph_len
    self.cls_index = cls_index
    self.start_position = start_position
    self.end_position = end_position
    self.is_impossible = is_impossible


def read_squad_examples(sample, is_training):
  """Read a SQuAD json file into a list of SquadExample."""

  examples = []
  paragraph_text = sample["context"]
  paragraph_text = re.sub(r'\[TLE\]|\[DOC\]|\[PAR\]', '[SEP]', paragraph_text)

  for qa in sample["qas"]:
    qas_id = qa["qid"]
    question_text = qa["question"]
    start_position = None
    orig_answer_text = None
    is_impossible = False

    example = SquadExample(
        qas_id=qas_id,
        question_text=question_text,
        paragraph_text=paragraph_text)
    examples.append(example)

  return examples

def _convert_index(index, pos, M=None, is_start=True):
  if index[pos] is not None:
    return index[pos]
  N = len(index)
  rear = pos
  while rear < N - 1 and index[rear] is None:
    rear += 1
  front = pos
  while front > 0 and index[front] is None:
    front -= 1
  assert index[front] is not None or index[rear] is not None
  if index[front] is None:
    if index[rear] >= 1:
      if is_start:
        return 0
      else:
        return index[rear] - 1
    return index[rear]
  if index[rear] is None:
    if M is not None and index[front] < M - 1:
      if is_start:
        return index[front] + 1
      else:
        return M - 1
    return index[front]
  if is_start:
    if index[rear] > index[front] + 1:
      return index[front] + 1
    else:
      return index[rear]
  else:
    if index[rear] > index[front] + 1:
      return index[rear] - 1
    else:
      return index[front]


def convert_examples_to_features(examples, sp_model, max_seq_length,
                                 doc_stride, max_query_length, is_training,
                                 uncased):
  """Loads a data file into a list of `InputBatch`s."""

  cnt_pos, cnt_neg = 0, 0
  unique_id = 1000000000
  max_N, max_M = 1024, 1024
  f = np.zeros((max_N, max_M), dtype=np.float32)

  for (example_index, example) in enumerate(examples):

    if example_index % 100 == 0:
      print('Converting {}/{} pos {} neg {}'.format(
          example_index, len(examples), cnt_pos, cnt_neg))

    query_tokens = encode_ids(
        sp_model,
        preprocess_text(example.question_text, lower=uncased))

    if len(query_tokens) > max_query_length:
      query_tokens = query_tokens[0:max_query_length]

    paragraph_text = example.paragraph_text
    para_tokens = encode_pieces(
        sp_model,
        preprocess_text(example.paragraph_text, lower=uncased))

    chartok_to_tok_index = []
    tok_start_to_chartok_index = []
    tok_end_to_chartok_index = []
    char_cnt = 0
    for i, token in enumerate(para_tokens):
      chartok_to_tok_index.extend([i] * len(token))
      tok_start_to_chartok_index.append(char_cnt)
      char_cnt += len(token)
      tok_end_to_chartok_index.append(char_cnt - 1)

    tok_cat_text = ''.join(para_tokens).replace(SPIECE_UNDERLINE, ' ')
    N, M = len(paragraph_text), len(tok_cat_text)

    if N > max_N or M > max_M:
      max_N = max(N, max_N)
      max_M = max(M, max_M)
      f = np.zeros((max_N, max_M), dtype=np.float32)
      gc.collect()

    g = {}

    def _lcs_match(max_dist):
      f.fill(0)
      g.clear()

      ### longest common sub sequence
      # f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j))
      for i in range(N):

        # note(zhiliny):
        # unlike standard LCS, this is specifically optimized for the setting
        # because the mismatch between sentence pieces and original text will
        # be small
        for j in range(i - max_dist, i + max_dist):
          if j >= M or j < 0: continue

          if i > 0:
            g[(i, j)] = 0
            f[i, j] = f[i - 1, j]

          if j > 0 and f[i, j - 1] > f[i, j]:
            g[(i, j)] = 1
            f[i, j] = f[i, j - 1]

          f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0
          if (preprocess_text(paragraph_text[i], lower=uncased,
              remove_space=False)
              == tok_cat_text[j]
              and f_prev + 1 > f[i, j]):
            g[(i, j)] = 2
            f[i, j] = f_prev + 1

    max_dist = abs(N - M) + 5
    for _ in range(2):
      _lcs_match(max_dist)
      if f[N - 1, M - 1] > 0.8 * N: break
      max_dist *= 2

    orig_to_chartok_index = [None] * N
    chartok_to_orig_index = [None] * M
    i, j = N - 1, M - 1
    while i >= 0 and j >= 0:
      if (i, j) not in g: break
      if g[(i, j)] == 2:
        orig_to_chartok_index[i] = j
        chartok_to_orig_index[j] = i
        i, j = i - 1, j - 1
      elif g[(i, j)] == 1:
        j = j - 1
      else:
        i = i - 1

    if all(v is None for v in orig_to_chartok_index) or f[N - 1, M - 1] < 0.8 * N:
      print('MISMATCH DETECTED!')
      continue

    tok_start_to_orig_index = []
    tok_end_to_orig_index = []
    for i in range(len(para_tokens)):
      start_chartok_pos = tok_start_to_chartok_index[i]
      end_chartok_pos = tok_end_to_chartok_index[i]
      start_orig_pos = _convert_index(chartok_to_orig_index, start_chartok_pos,
                                      N, is_start=True)
      end_orig_pos = _convert_index(chartok_to_orig_index, end_chartok_pos,
                                    N, is_start=False)

      tok_start_to_orig_index.append(start_orig_pos)
      tok_end_to_orig_index.append(end_orig_pos)

    if not is_training:
      tok_start_position = tok_end_position = None

    if is_training and example.is_impossible:
      tok_start_position = -1
      tok_end_position = -1

    if is_training and not example.is_impossible:
      start_position = example.start_position
      end_position = start_position + len(example.orig_answer_text) - 1

      start_chartok_pos = _convert_index(orig_to_chartok_index, start_position,
                                         is_start=True)
      tok_start_position = chartok_to_tok_index[start_chartok_pos]

      end_chartok_pos = _convert_index(orig_to_chartok_index, end_position,
                                       is_start=False)
      tok_end_position = chartok_to_tok_index[end_chartok_pos]
      assert tok_start_position <= tok_end_position

    def _piece_to_id(x):
      if six.PY2 and isinstance(x, unicode):
        x = x.encode('utf-8')
      return sp_model.PieceToId(x)

    all_doc_tokens = list(map(_piece_to_id, para_tokens))

    # The -3 accounts for [CLS], [SEP] and [SEP]
    max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

    # We can have documents that are longer than the maximum sequence length.
    # To deal with this we do a sliding window approach, where we take chunks
    # of the up to our max length with a stride of `doc_stride`.
    _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
        "DocSpan", ["start", "length"])
    doc_spans = []
    start_offset = 0
    while start_offset < len(all_doc_tokens):
      length = len(all_doc_tokens) - start_offset
      if length > max_tokens_for_doc:
        length = max_tokens_for_doc
      doc_spans.append(_DocSpan(start=start_offset, length=length))
      if start_offset + length == len(all_doc_tokens):
        break
      start_offset += min(length, doc_stride)

    for (doc_span_index, doc_span) in enumerate(doc_spans):
      tokens = []
      token_is_max_context = {}
      segment_ids = []
      p_mask = []

      cur_tok_start_to_orig_index = []
      cur_tok_end_to_orig_index = []

      for i in range(doc_span.length):
        split_token_index = doc_span.start + i

        cur_tok_start_to_orig_index.append(
            tok_start_to_orig_index[split_token_index])
        cur_tok_end_to_orig_index.append(
            tok_end_to_orig_index[split_token_index])

        is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                               split_token_index)
        token_is_max_context[len(tokens)] = is_max_context
        tokens.append(all_doc_tokens[split_token_index])
        segment_ids.append(SEG_ID_P)
        p_mask.append(0)

      paragraph_len = len(tokens)

      tokens.append(SEP_ID)
      segment_ids.append(SEG_ID_P)
      p_mask.append(1)

      # note(zhiliny): we put P before Q
      # because during pretraining, B is always shorter than A
      for token in query_tokens:
        tokens.append(token)
        segment_ids.append(SEG_ID_Q)
        p_mask.append(1)
      tokens.append(SEP_ID)
      segment_ids.append(SEG_ID_Q)
      p_mask.append(1)

      cls_index = len(segment_ids)
      tokens.append(CLS_ID)
      segment_ids.append(SEG_ID_CLS)
      p_mask.append(0)

      input_ids = tokens

      # The mask has 0 for real tokens and 1 for padding tokens. Only real
      # tokens are attended to.
      input_mask = [0] * len(input_ids)

      # Zero-pad up to the sequence length.
      while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(1)
        segment_ids.append(SEG_ID_PAD)
        p_mask.append(1)

      assert len(input_ids) == max_seq_length
      assert len(input_mask) == max_seq_length
      assert len(segment_ids) == max_seq_length
      assert len(p_mask) == max_seq_length

      span_is_impossible = example.is_impossible
      start_position = None
      end_position = None
      if is_training and not span_is_impossible:
        # For training, if our document chunk does not contain an annotation
        # we throw it out, since there is nothing to predict.
        doc_start = doc_span.start
        doc_end = doc_span.start + doc_span.length - 1
        out_of_span = False
        if not (tok_start_position >= doc_start and
                tok_end_position <= doc_end):
          out_of_span = True
        if out_of_span:
          # continue
          start_position = 0
          end_position = 0
          span_is_impossible = True
        else:
          # note(zhiliny): we put P before Q, so doc_offset should be zero.
          # doc_offset = len(query_tokens) + 2
          doc_offset = 0
          start_position = tok_start_position - doc_start + doc_offset
          end_position = tok_end_position - doc_start + doc_offset

      if is_training and span_is_impossible:
        start_position = cls_index
        end_position = cls_index

      if example_index < 0:
        print("*** Example ***")
        print("unique_id: %s" % (unique_id))
        print("example_index: %s" % (example_index))
        print("doc_span_index: %s" % (doc_span_index))
        print("tok_start_to_orig_index: %s" % " ".join(
            [str(x) for x in cur_tok_start_to_orig_index]))
        print("tok_end_to_orig_index: %s" % " ".join(
            [str(x) for x in cur_tok_end_to_orig_index]))
        print("token_is_max_context: %s" % " ".join([
            "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
        ]))
        print("input_ids: %s" % " ".join([str(x) for x in input_ids]))
        print(
            "input_mask: %s" % " ".join([str(x) for x in input_mask]))
        print(
            "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))

        if is_training and span_is_impossible:
          print("impossible example span")

        if is_training and not span_is_impossible:
          pieces = [sp_model.IdToPiece(token) for token in
                    tokens[start_position: (end_position + 1)]]
          answer_text = sp_model.DecodePieces(pieces)
          print("start_position: %d" % (start_position))
          print("end_position: %d" % (end_position))
          print(
              "answer: %s" % (printable_text(answer_text)))

          # note(zhiliny): With multi processing,
          # the example_index is actually the index within the current process
          # therefore we use example_index=None to avoid being used in the future.
          # The current code does not use example_index of training data.
      if is_training:
        feat_example_index = None
      else:
        feat_example_index = example_index

      feature = InputFeatures(
          unique_id=unique_id,
          example_index=feat_example_index,
          doc_span_index=doc_span_index,
          tok_start_to_orig_index=cur_tok_start_to_orig_index,
          tok_end_to_orig_index=cur_tok_end_to_orig_index,
          token_is_max_context=token_is_max_context,
          input_ids=input_ids,
          input_mask=input_mask,
          p_mask=p_mask,
          segment_ids=segment_ids,
          paragraph_len=paragraph_len,
          cls_index=cls_index,
          start_position=start_position,
          end_position=end_position,
          is_impossible=span_is_impossible)

      unique_id += 1
      if span_is_impossible:
        cnt_neg += 1
      else:
        cnt_pos += 1

      yield feature

  print("Total number of instances: {} = pos {} neg {}".format(
      cnt_pos + cnt_neg, cnt_pos, cnt_neg))

def _check_is_max_context(doc_spans, cur_span_index, position):
  """Check if this is the 'max context' doc span for the token."""

  # Because of the sliding window approach taken to scoring documents, a single
  # token can appear in multiple documents. E.g.
  #  Doc: the man went to the store and bought a gallon of milk
  #  Span A: the man went to the
  #  Span B: to the store and bought
  #  Span C: and bought a gallon of
  #  ...
  #
  # Now the word 'bought' will have two scores from spans B and C. We only
  # want to consider the score with "maximum context", which we define as
  # the *minimum* of its left and right context (the *sum* of left and
  # right context will always be the same, of course).
  #
  # In the example the maximum context for 'bought' would be span C since
  # it has 1 left context and 3 right context, while span B has 4 left context
  # and 0 right context.
  best_score = None
  best_span_index = None
  for (span_index, doc_span) in enumerate(doc_spans):
    end = doc_span.start + doc_span.length - 1
    if position < doc_span.start:
      continue
    if position > end:
      continue
    num_left_context = position - doc_span.start
    num_right_context = end - position
    score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
    if best_score is None or score > best_score:
      best_score = score
      best_span_index = span_index

  return cur_span_index == best_span_index

class DataProcessor(object):
    def __init__(self, spiece_model_file, uncased, max_seq_length,
                 doc_stride, max_query_length):
        self._sp_model = spm.SentencePieceProcessor()
        self._sp_model.Load(spiece_model_file)
        self._uncased = uncased 
        self._max_seq_length = max_seq_length
        self._doc_stride = doc_stride
        self._max_query_length = max_query_length

        self.current_train_example = -1
        self.num_train_examples = -1
        self.current_train_epoch = -1

        self.train_examples = None
        self.predict_examples = None
        self.num_examples = {'train': -1, 'predict': -1}

    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_train_example, self.current_train_epoch

    def get_examples(self,
                     sample,
                     is_training):
        examples = read_squad_examples(
            sample,
            is_training=is_training)
        return examples

    def get_num_examples(self, phase):
        if phase not in ['train', 'predict']:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'predict'].")
        return self.num_examples[phase]

    def get_features(self, examples, is_training):
        features = convert_examples_to_features(
            examples=examples,
            sp_model=self._sp_model,
            max_seq_length=self._max_seq_length,
            doc_stride=self._doc_stride,
            max_query_length=self._max_query_length,
            is_training=is_training,
            uncased=self._uncased)
        return features

    def data_generator(self,
                       sample,
                       batch_size,
                       phase='predict',
                       shuffle=False,
                       dev_count=1,
                       epoch=1):
        self.predict_examples = self.get_examples(
            sample,
            is_training=False)
        examples = self.predict_examples
        self.num_examples['predict'] = len(self.predict_examples)

        def batch_reader(features, batch_size):
            batch = []
            feats = []
            for (index, feature) in enumerate(features):
                if phase == 'train':
                    self.current_train_example = index + 1
                labels = [feature.unique_id] if feature.start_position is None else [
                              feature.start_position, feature.end_position, feature.is_impossible
                          ]
                example = [
                    feature.input_ids, feature.segment_ids, feature.input_mask, 
                    feature.cls_index, feature.p_mask
                ] + labels

                to_append = len(batch) < batch_size
                if to_append:
                    batch.append(example)
                    feats.append(feature)
                else:
                    yield batch, feats
                    batch = [example]
                    feats = [feature]

            if len(batch) > 0:
                yield batch, feats

        def prepare_batch_data(insts):
            """Generate numpy tensors"""
            input_ids = np.expand_dims(np.array([inst[0] for inst in insts]).astype('int64'), axis=-1)
            segment_ids = np.array([inst[1] for inst in insts]).astype('int64')
            input_mask = np.array([inst[2] for inst in insts]).astype('float32')
            cls_index = np.expand_dims(np.array([inst[3] for inst in insts]).astype('int64'), axis=-1)
            p_mask = np.array([inst[4] for inst in insts]).astype('float32')

            ret_list = [input_ids, segment_ids, input_mask, cls_index, p_mask]
            if phase == 'train':
                start_positions = np.expand_dims(np.array([inst[5] for inst in insts]).astype('int64'), axis=-1)
                end_positions = np.expand_dims(np.array([inst[6] for inst in insts]).astype('int64'), axis=-1)
                is_impossible = np.expand_dims(np.array([inst[7] for inst in insts]).astype('float32'), axis=-1)
                ret_list += [start_positions, end_positions, is_impossible]
            else:
                unique_ids = np.expand_dims(np.array([inst[5] for inst in insts]).astype('int64'), axis=-1)
                ret_list += [unique_ids]

            return ret_list
            
        feature_gen = self.get_features(examples, is_training=False)

        all_dev_batches = []
        features = []
        for batch_insts, feats in batch_reader(feature_gen, batch_size):
            batch_data = prepare_batch_data(batch_insts)
            all_dev_batches.append(batch_data)
            features.extend(feats)
        return examples, features, all_dev_batches


_PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
    "PrelimPrediction",
    ["feature_index", "start_index", "end_index",
    "start_log_prob", "end_log_prob"])

_NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
    "NbestPrediction", ["text", "start_log_prob", "end_log_prob"])

def get_answers(all_examples, all_features, all_results, n_best_size,
                      max_answer_length, start_n_top, end_n_top):
  """Write final predictions to the json file and log-odds of null if needed."""

  example_index_to_features = collections.defaultdict(list)
  for feature in all_features:
    example_index_to_features[feature.example_index].append(feature)

  unique_id_to_result = {}
  for result in all_results:
    unique_id_to_result[result.unique_id] = result

  all_predictions = collections.OrderedDict()
  all_nbest_json = collections.OrderedDict()
  scores_diff_json = collections.OrderedDict()

  for (example_index, example) in enumerate(all_examples):
    features = example_index_to_features[example_index]

    prelim_predictions = []
    # keep track of the minimum score of null start+end of position 0
    score_null = 1000000  # large and positive

    for (feature_index, feature) in enumerate(features):
      result = unique_id_to_result[feature.unique_id]
      print("cls_logits", feature.unique_id, result.cls_logits)
      cur_null_score = result.cls_logits
      
      # if we could have irrelevant answers, get the min score of irrelevant
      score_null = min(score_null, cur_null_score)

      for i in range(start_n_top):
        for j in range(end_n_top):
          start_log_prob = result.start_top_log_probs[i]
          start_index = result.start_top_index[i]

          j_index = i * end_n_top + j

          end_log_prob = result.end_top_log_probs[j_index]
          end_index = result.end_top_index[j_index]

          # We could hypothetically create invalid predictions, e.g., predict
          # that the start of the span is in the question. We throw out all
          # invalid predictions.
          if start_index >= feature.paragraph_len - 1:
            continue
          if end_index >= feature.paragraph_len - 1:
            continue

          if not feature.token_is_max_context.get(start_index, False):
            continue
          if end_index < start_index:
            continue
          length = end_index - start_index + 1
          if length > max_answer_length:
            continue

          prelim_predictions.append(
              _PrelimPrediction(
                  feature_index=feature_index,
                  start_index=start_index,
                  end_index=end_index,
                  start_log_prob=start_log_prob,
                  end_log_prob=end_log_prob))

    prelim_predictions = sorted(
        prelim_predictions,
        key=lambda x: (x.start_log_prob + x.end_log_prob),
        reverse=True)

    seen_predictions = {}
    nbest = []
    for pred in prelim_predictions:
      if len(nbest) >= n_best_size:
        break
      feature = features[pred.feature_index]

      tok_start_to_orig_index = feature.tok_start_to_orig_index
      tok_end_to_orig_index = feature.tok_end_to_orig_index
      start_orig_pos = tok_start_to_orig_index[pred.start_index]
      end_orig_pos = tok_end_to_orig_index[pred.end_index]

      paragraph_text = example.paragraph_text
      final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip()

      if final_text in seen_predictions:
        continue

      seen_predictions[final_text] = True

      nbest.append(
          _NbestPrediction(
              text=final_text,
              start_log_prob=pred.start_log_prob,
              end_log_prob=pred.end_log_prob))

    # In very rare edge cases we could have no valid predictions. So we
    # just create a nonce prediction in this case to avoid failure.
    if not nbest:
      nbest.append(
          _NbestPrediction(text="", start_log_prob=-1e6,
          end_log_prob=-1e6))

    total_scores = []
    best_non_null_entry = None
    for entry in nbest:
      total_scores.append(entry.start_log_prob + entry.end_log_prob)
      if not best_non_null_entry:
        best_non_null_entry = entry

    probs = _compute_softmax(total_scores)

    nbest_json = []
    for (i, entry) in enumerate(nbest):
      output = collections.OrderedDict()
      output["text"] = entry.text
      output["probability"] = probs[i]
      output["start_log_prob"] = entry.start_log_prob
      output["end_log_prob"] = entry.end_log_prob
      nbest_json.append(output)

    assert len(nbest_json) >= 1
    assert best_non_null_entry is not None

    score_diff = score_null
    scores_diff_json[example.qas_id] = score_diff
    # note(zhiliny): always predict best_non_null_entry
    # and the evaluation script will search for the best threshold
    all_predictions[example.qas_id] = best_non_null_entry.text

    all_nbest_json[example.qas_id] = nbest_json

  return all_predictions, all_nbest_json
  # with open(output_prediction_file, "w") as writer:
  #   writer.write(json.dumps(all_predictions, indent=4) + "\n")

  # with open(output_nbest_file, "w") as writer:
  #   writer.write(json.dumps(all_nbest_json, indent=4) + "\n")

  # with open(output_null_log_odds_file, "w") as writer:
  #   writer.write(json.dumps(scores_diff_json, indent=4) + "\n")

  # qid_to_has_ans = squad_utils.make_qid_to_has_ans(orig_data)
  # has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
  # no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
  # exact_raw, f1_raw = squad_utils.get_raw_scores(orig_data, all_predictions)
  # out_eval = {}

  # squad_utils.find_all_best_thresh_v2(out_eval, all_predictions, exact_raw, f1_raw,
  #                                  scores_diff_json, qid_to_has_ans)

  # return out_eval

def _get_best_indexes(logits, n_best_size):
  """Get the n-best logits from a list."""
  index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)

  best_indexes = []
  for i in range(len(index_and_score)):
    if i >= n_best_size:
      break
    best_indexes.append(index_and_score[i][0])
  return best_indexes


def _compute_softmax(scores):
  """Compute softmax probability over raw logits."""
  if not scores:
    return []

  max_score = None
  for score in scores:
    if max_score is None or score > max_score:
      max_score = score

  exp_scores = []
  total_sum = 0.0
  for score in scores:
    x = math.exp(score - max_score)
    exp_scores.append(x)
    total_sum += x

  probs = []
  for score in exp_scores:
    probs.append(score / total_sum)
  return probs


if __name__ == '__main__':
    processor = DataProcessor(spiece_model_file="xlnet_cased_L-24_H-1024_A-16/spiece.model", 
                                uncased=False, 
                                max_seq_length=512,
                                doc_stride=128, 
                                max_query_length=64)

    train_data_generator = processor.data_generator(
            data_path="squad_v2.0/dev-v2.0.json",
            batch_size=32,
            phase='predict',
            shuffle=True,
            dev_count=1,
            epoch=1)

    for (index, sample) in enumerate(train_data_generator()):
        if index < 10:
            print("index:", index)
            for tensor in sample:
                print(tensor.shape)
        else:
            break
    #for (index, example) in enumerate(train_examples):
    #    if index < 5:
    #        print(example)