xlnet.py 8.8 KB
Newer Older
0
0YuanZhang0 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import six
import json
import numpy as np
import paddle.fluid as fluid
from model.transformer_encoder import encoder, pre_process_layer
import modeling

def _get_initiliaizer(args):
    if args.init == "uniform":
        param_initializer = fluid.initializer.Uniform(
            low=-args.init_range, high=args.init_range)
    elif args.init == "normal":
        param_initializer = fluid.initializer.Normal(scale=args.init_std)
    else:
        raise ValueError("Initializer {} not supported".format(args.init))
    return param_initializer
      
def init_attn_mask(args, place):
    """create causal attention mask."""
    qlen = args.max_seq_length
    mlen=0 if 'mem_len' not in args else args.mem_len
    same_length=False if 'same_length' not in args else args.same_length
    dtype = 'float16' if args.use_fp16 else 'float32'
    attn_mask = np.ones([qlen, qlen], dtype=dtype)
    mask_u = np.triu(attn_mask)
    mask_dia = np.diag(np.diag(attn_mask))
    attn_mask_pad = np.zeros([qlen, mlen], dtype=dtype)
    attn_mask = np.concatenate([attn_mask_pad, mask_u - mask_dia], 1)
    if same_length:
        mask_l = np.tril(attn_mask)
        attn_mask = np.concatenate([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)
    attn_mask = attn_mask[:, :, None, None]
    attn_mask_t = fluid.global_scope().find_var("attn_mask").get_tensor()
    attn_mask_t.set(attn_mask, place)

class XLNetConfig(object):
    def __init__(self, config_path):
        self._config_dict = self._parse(config_path)

    def _parse(self, config_path):
        try:
            with open(config_path) as json_file:
                config_dict = json.load(json_file)
        except Exception:
            raise IOError("Error in parsing xlnet model config file '%s'" %
                          config_path)
        else:
            return config_dict

    def __getitem__(self, key):
        return self._config_dict[key]

    def has_key(self, key):
        return self._config_dict.has_key(key)

    def print_config(self):
        for arg, value in sorted(six.iteritems(self._config_dict)):
            print('%s: %s' % (arg, value))
        print('------------------------------------------------')


class XLNetModel(object):
    def __init__(self,
                 xlnet_config,
                 input_ids,
                 seg_ids,
                 input_mask,
                 args,
                 mems=None,
                 perm_mask=None,
                 target_mapping=None,
                 inp_q=None):
        self._tie_weight = True

        self._d_head = xlnet_config['d_head']
        self._d_inner = xlnet_config['d_inner']
        self._d_model = xlnet_config['d_model']
        self._ff_activation = xlnet_config['ff_activation']
        self._n_head = xlnet_config['n_head']
        self._n_layer = xlnet_config['n_layer']
        self._n_token = xlnet_config['n_token']
        self._untie_r = xlnet_config['untie_r']

        self._mem_len=None if 'mem_len' not in args else args.mem_len
        self._reuse_len=None if 'reuse_len' not in args else args.reuse_len
        self._bi_data=False if 'bi_data' not in args else args.bi_data
        self._clamp_len=args.clamp_len
        self._same_length=False if 'same_length' not in args else args.same_length
        # Initialize all weigths by the specified initializer, and all biases 
        # will be initialized by constant zero by default.
        self._param_initializer = _get_initiliaizer(args)

        tfm_args = dict(
                n_token=self._n_token,
                initializer=self._param_initializer,
                attn_type="bi",
                n_layer=self._n_layer,
                d_model=self._d_model,
		n_head=self._n_head,
		d_head=self._d_head,
		d_inner=self._d_inner,
		ff_activation=self._ff_activation,
		untie_r=self._untie_r,

		use_bfloat16=args.use_fp16,
		dropout=args.dropout,
		dropatt=args.dropatt,

		mem_len=self._mem_len,
		reuse_len=self._reuse_len,
		bi_data=self._bi_data,
		clamp_len=args.clamp_len,
		same_length=self._same_length,
                name='model_transformer')
        input_args = dict(
            inp_k=input_ids,
            seg_id=seg_ids,
            input_mask=input_mask,
            mems=mems,
            perm_mask=perm_mask,
            target_mapping=target_mapping,
            inp_q=inp_q)
        tfm_args.update(input_args)
        self.output, self.new_mems, self.lookup_table = modeling.transformer_xl(**tfm_args)
        #self._build_model(input_ids, sentence_ids, input_mask)

    def get_initializer(self):
        return self._param_initializer

    
     
    def get_sequence_output(self):
        return self.output

    def get_pooled_output(self):
        """Get the first feature of each sequence for classification"""

        next_sent_feat = fluid.layers.slice(
            input=self._enc_out, axes=[1], starts=[0], ends=[1])
        next_sent_feat = fluid.layers.fc(
            input=next_sent_feat,
            size=self._emb_size,
            act="tanh",
            param_attr=fluid.ParamAttr(
                name="pooled_fc.w_0", initializer=self._param_initializer),
            bias_attr="pooled_fc.b_0")
        return next_sent_feat

    def get_pretraining_output(self, mask_label, mask_pos, labels):
        """Get the loss & accuracy for pretraining"""

        mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')

        # extract the first token feature in each sentence
        next_sent_feat = self.get_pooled_output()
        reshaped_emb_out = fluid.layers.reshape(
            x=self._enc_out, shape=[-1, self._emb_size])
        # extract masked tokens' feature
        mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)

        # transform: fc
        mask_trans_feat = fluid.layers.fc(
            input=mask_feat,
            size=self._emb_size,
            act=self._hidden_act,
            param_attr=fluid.ParamAttr(
                name='mask_lm_trans_fc.w_0',
                initializer=self._param_initializer),
            bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
        # transform: layer norm 
        mask_trans_feat = pre_process_layer(
            mask_trans_feat, 'n', name='mask_lm_trans')

        mask_lm_out_bias_attr = fluid.ParamAttr(
            name="mask_lm_out_fc.b_0",
            initializer=fluid.initializer.Constant(value=0.0))
        if self._weight_sharing:
            word_emb = fluid.default_main_program().global_block().var(
                self._word_emb_name)
            if self._emb_dtype != self._dtype:
                word_emb = fluid.layers.cast(word_emb, self._dtype)
            fc_out = fluid.layers.matmul(
                x=mask_trans_feat, y=word_emb, transpose_y=True)
            fc_out += fluid.layers.create_parameter(
                shape=[self._voc_size],
                dtype=self._dtype,
                attr=mask_lm_out_bias_attr,
                is_bias=True)

        else:
            fc_out = fluid.layers.fc(input=mask_trans_feat,
                                     size=self._voc_size,
                                     param_attr=fluid.ParamAttr(
                                         name="mask_lm_out_fc.w_0",
                                         initializer=self._param_initializer),
                                     bias_attr=mask_lm_out_bias_attr)

        mask_lm_loss = fluid.layers.softmax_with_cross_entropy(
            logits=fc_out, label=mask_label)
        mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)

        next_sent_fc_out = fluid.layers.fc(
            input=next_sent_feat,
            size=2,
            param_attr=fluid.ParamAttr(
                name="next_sent_fc.w_0", initializer=self._param_initializer),
            bias_attr="next_sent_fc.b_0")

        next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(
            logits=next_sent_fc_out, label=labels, return_softmax=True)

        next_sent_acc = fluid.layers.accuracy(
            input=next_sent_softmax, label=labels)

        mean_next_sent_loss = fluid.layers.mean(next_sent_loss)

        loss = mean_next_sent_loss + mean_mask_lm_loss
        return next_sent_acc, mean_mask_lm_loss, loss