text_encoder.py 32.9 KB
Newer Older
J
jiangbojian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import six
import os
import re
import logging
from tokenizer import encode as tokenizer_encode
from tokenizer import decode as tokenizer_decode
from itertools import chain
import collections

PAD = "<pad>"
EOS = "<EOS>"
RESERVED_TOKENS = [PAD, EOS]
NUM_RESERVED_TOKENS = len(RESERVED_TOKENS)
PAD_ID = RESERVED_TOKENS.index(PAD)  # Normally 0
EOS_ID = RESERVED_TOKENS.index(EOS)  # Normally 1

if six.PY2:
    RESERVED_TOKENS_BYTES = RESERVED_TOKENS
else:
    RESERVED_TOKENS_BYTES = [bytes(PAD, "ascii"), bytes(EOS, "ascii")]

# Regular expression for unescaping token strings.
# '\u' is converted to '_'
# '\\' is converted to '\'
# '\213;' is converted to unichr(213)
_UNESCAPE_REGEX = re.compile(r"\\u|\\\\|\\([0-9]+);")
_ESCAPE_CHARS = set(u"\\_u;0123456789")


def strip_ids(ids, ids_to_strip):
    """Strip ids_to_strip from the end ids."""
    ids = list(ids)
    while ids[-1] in ids_to_strip:
        ids.pop()
    return ids


def native_to_unicode(s):
    """

    :param s:
    :return:
    """
    return s if is_unicode(s) else to_unicode(s)


def is_unicode(s):
    """

    :param s:
    :return:
    """
    if six.PY2:
        if isinstance(s, unicode):
            return True
    else:
        if isinstance(s, str):
            return True
    return False


def unicode_to_native(s):
    """

    :param s:
    :return:
    """
    if six.PY2:
        return s.encode("utf-8") if is_unicode(s) else s
    else:
        return s


def to_unicode(s, ignore_errors=False):
    """

    :param s:
    :param ignore_errors:
    :return:
    """
    if is_unicode(s):
        """

        """
        return s
    error_mode = "ignore" if ignore_errors else "strict"
    return s.decode("utf-8", errors=error_mode)


def _escape_token(token, alphabet):
    """Escape away underscores and OOV characters and append '_'.

    This allows the token to be expressed as the concatenation of a list
    of subtokens from the vocabulary. The underscore acts as a sentinel
    which allows us to invertibly concatenate multiple such lists.

    Args:
      token: A unicode string to be escaped.
      alphabet: A set of all characters in the vocabulary's alphabet.

    Returns:
      escaped_token: An escaped unicode string.

    Raises:
      ValueError: If the provided token is not unicode.
    """
    if not isinstance(token, six.text_type):
        raise ValueError("Expected string type for token, got %s" % type(token))

    token = token.replace(u"\\", u"\\\\").replace(u"_", u"\\u")
    ret = [c if c in alphabet and c != u"\n" else r"\%d;" % ord(c) for c in token]
    return u"".join(ret) + "_"


def _unescape_token(escaped_token):
    """Inverse of _escape_token().

    Args:
      escaped_token: a unicode string

    Returns:
      token: a unicode string
    """

    def match(m):
        """

        :param m:
        :return:
        """
        if m.group(1) is None:
            return u"_" if m.group(0) == u"\\u" else u"\\"

        try:
            return six.unichr(int(m.group(1)))
        except (ValueError, OverflowError) as _:
            return u"\u3013"  # Unicode for undefined character.

    trimmed = escaped_token[:-1] if escaped_token.endswith("_") else escaped_token
    return _UNESCAPE_REGEX.sub(match, trimmed)


class TextEncoder(object):
    """Base class for converting from ints to/from human readable strings."""

    def __init__(self, num_reserved_ids=NUM_RESERVED_TOKENS):
        self._num_reserved_ids = num_reserved_ids

    @property
    def num_reserved_ids(self):
        """

        :return:
        """
        return self._num_reserved_ids

    def encode(self, s):
        """Transform a human-readable string into a sequence of int ids.

        The ids should be in the range [num_reserved_ids, vocab_size). Ids [0,
        num_reserved_ids) are reserved.

        EOS is not appended.

        Args:
          s: human-readable string to be converted.

        Returns:
          ids: list of integers
        """
        return [int(w) + self._num_reserved_ids for w in s.split()]

    def decode(self, ids, strip_extraneous=False):
        """Transform a sequence of int ids into a human-readable string.

        EOS is not expected in ids.

        Args:
          ids: list of integers to be converted.
          strip_extraneous: bool, whether to strip off extraneous tokens
            (EOS and PAD).

        Returns:
          s: human-readable string.
        """
        if strip_extraneous:
            ids = strip_ids(ids, list(range(self._num_reserved_ids or 0)))
        return " ".join(self.decode_list(ids))

    def decode_list(self, ids):
        """Transform a sequence of int ids into a their string versions.

        This method supports transforming individual input/output ids to their
        string versions so that sequence to/from text conversions can be visualized
        in a human readable format.

        Args:
          ids: list of integers to be converted.

        Returns:
          strs: list of human-readable string.
        """
        decoded_ids = []
        for id_ in ids:
            if 0 <= id_ < self._num_reserved_ids:
                decoded_ids.append(RESERVED_TOKENS[int(id_)])
            else:
                decoded_ids.append(id_ - self._num_reserved_ids)
        return [str(d) for d in decoded_ids]

    @property
    def vocab_size(self):
        """

        :return:
        """
        raise NotImplementedError()


class SubwordTextEncoder(TextEncoder):
    """Class for invertibly encoding text using a limited vocabulary.

    Invertibly encodes a native string as a sequence of subtokens from a limited
    vocabulary.

    A SubwordTextEncoder is built from a corpus (so it is tailored to the text in
    the corpus), and stored to a file. See text_encoder_build_subword.py.

    It can then be loaded and used to encode/decode any text.

    Encoding has four phases:

    1. Tokenize into a list of tokens.  Each token is a unicode string of either
       all alphanumeric characters or all non-alphanumeric characters.  We drop
       tokens consisting of a single space that are between two alphanumeric
       tokens.

    2. Escape each token.  This escapes away special and out-of-vocabulary
       characters, and makes sure that each token ends with an underscore, and
       has no other underscores.

    3. Represent each escaped token as a the concatenation of a list of subtokens
       from the limited vocabulary.  Subtoken selection is done greedily from
       beginning to end.  That is, we construct the list in order, always picking
       the longest subtoken in our vocabulary that matches a prefix of the
       remaining portion of the encoded token.

    4. Concatenate these lists.  This concatenation is invertible due to the
       fact that the trailing underscores indicate when one list is finished.

    """

    def __init__(self, filename=None):
        """Initialize and read from a file, if provided.

        Args:
          filename: filename from which to read vocab. If None, do not load a
            vocab
        """
        self._alphabet = set()
        self.filename = filename
        if filename is not None:
            self._load_from_file(filename)
        super(SubwordTextEncoder, self).__init__(num_reserved_ids=None)

    def encode(self, s):
        """Converts a native string to a list of subtoken ids.

        Args:
          s: a native string.
        Returns:
          a list of integers in the range [0, vocab_size)
        """
        return self._tokens_to_subtoken_ids(
            tokenizer_encode(native_to_unicode(s)))

    def encode_without_tokenizing(self, token_text):
        """Converts string to list of subtoken ids without calling tokenizer.

        This treats `token_text` as a single token and directly converts it
        to subtoken ids. This may be useful when the default tokenizer doesn't
        do what we want (e.g., when encoding text with tokens composed of lots of
        nonalphanumeric characters). It is then up to the caller to make sure that
        raw text is consistently converted into tokens. Only use this if you are
        sure that `encode` doesn't suit your needs.

        Args:
          token_text: A native string representation of a single token.
        Returns:
          A list of subword token ids; i.e., integers in the range [0, vocab_size).
        """
        return self._tokens_to_subtoken_ids([native_to_unicode(token_text)])

    def decode(self, ids, strip_extraneous=False):
        """Converts a sequence of subtoken ids to a native string.

        Args:
          ids: a list of integers in the range [0, vocab_size)
          strip_extraneous: bool, whether to strip off extraneous tokens
            (EOS and PAD).

        Returns:
          a native string
        """
        if strip_extraneous:
            ids = strip_ids(ids, list(range(self._num_reserved_ids or 0)))
        return unicode_to_native(
            tokenizer_decode(self._subtoken_ids_to_tokens(ids)))

    def decode_list(self, ids):
        """

        :param ids:
        :return:
        """
        return [self._subtoken_id_to_subtoken_string(s) for s in ids]

    @property
    def vocab_size(self):
        """The subtoken vocabulary size."""
        return len(self._all_subtoken_strings)

    def _tokens_to_subtoken_ids(self, tokens):
        """Converts a list of tokens to a list of subtoken ids.

        Args:
          tokens: a list of strings.
        Returns:
          a list of integers in the range [0, vocab_size)
        """
        ret = []
        for token in tokens:
            ret.extend(self._token_to_subtoken_ids(token))
        return ret

    def _token_to_subtoken_ids(self, token):
        """Converts token to a list of subtoken ids.

        Args:
          token: a string.
        Returns:
          a list of integers in the range [0, vocab_size)
        """
        cache_location = hash(token) % self._cache_size
        cache_key, cache_value = self._cache[cache_location]
        if cache_key == token:
            return cache_value
        ret = self._escaped_token_to_subtoken_ids(
            _escape_token(token, self._alphabet))
        self._cache[cache_location] = (token, ret)
        return ret

    def _subtoken_ids_to_tokens(self, subtokens):
        """Converts a list of subtoken ids to a list of tokens.

        Args:
          subtokens: a list of integers in the range [0, vocab_size)
        Returns:
          a list of strings.
        """
        concatenated = "".join(
            [self._subtoken_id_to_subtoken_string(s) for s in subtokens])
        split = concatenated.split("_")
        ret = []
        for t in split:
            if t:
                unescaped = _unescape_token(t + "_")
                if unescaped:
                    ret.append(unescaped)
        return ret

    def _subtoken_id_to_subtoken_string(self, subtoken):
        """Converts a subtoken integer ID to a subtoken string."""
        if 0 <= subtoken < self.vocab_size:
            return self._all_subtoken_strings[subtoken]
        return u""

    def _escaped_token_to_subtoken_strings(self, escaped_token):
        """Converts an escaped token string to a list of subtoken strings.

        Args:
          escaped_token: An escaped token as a unicode string.
        Returns:
          A list of subtokens as unicode strings.
        """
        # NOTE: This algorithm is greedy; it won't necessarily produce the "best"
        # list of subtokens.
        ret = []
        start = 0
        token_len = len(escaped_token)
        while start < token_len:
            for end in range(
                    min(token_len, start + self._max_subtoken_len), start, -1):
                subtoken = escaped_token[start:end]
                if subtoken in self._subtoken_string_to_id:
                    ret.append(subtoken)
                    start = end
                    break

            else:  # Did not break
                # If there is no possible encoding of the escaped token then one of the
                # characters in the token is not in the alphabet. This should be
                # impossible and would be indicative of a bug.
                assert False, "Token substring not found in subtoken vocabulary."

        return ret

    def _escaped_token_to_subtoken_ids(self, escaped_token):
        """Converts an escaped token string to a list of subtoken IDs.

        Args:
          escaped_token: An escaped token as a unicode string.
        Returns:
          A list of subtoken IDs as integers.
        """
        return [
            self._subtoken_string_to_id[subtoken]
            for subtoken in self._escaped_token_to_subtoken_strings(escaped_token)
            ]

    @classmethod
    def build_from_generator(cls,
                             generator,
                             target_vocab_size,
                             max_subtoken_length=None,
                             reserved_tokens=None):
        """Builds a SubwordTextEncoder from the generated text.

        Args:
          generator: yields text.
          target_vocab_size: int, approximate vocabulary size to create.
          max_subtoken_length: Maximum length of a subtoken. If this is not set,
            then the runtime and memory use of creating the vocab is quadratic in
            the length of the longest token. If this is set, then it is instead
            O(max_subtoken_length * length of longest token).
          reserved_tokens: List of reserved tokens. The global variable
            `RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this
            argument is `None`, it will use `RESERVED_TOKENS`.

        Returns:
          SubwordTextEncoder with `vocab_size` approximately `target_vocab_size`.
        """
        token_counts = collections.defaultdict(int)
        for item in generator:
            for tok in tokenizer_encode(native_to_unicode(item)):
                token_counts[tok] += 1
        encoder = cls.build_to_target_size(
            target_vocab_size, token_counts, 1, 1e3,
            max_subtoken_length=max_subtoken_length,
            reserved_tokens=reserved_tokens)
        return encoder

    @classmethod
    def build_to_target_size(cls,
                             target_size,
                             token_counts,
                             min_val,
                             max_val,
                             max_subtoken_length=None,
                             reserved_tokens=None,
                             num_iterations=4):
        """Builds a SubwordTextEncoder that has `vocab_size` near `target_size`.

        Uses simple recursive binary search to find a minimum token count that most
        closely matches the `target_size`.

        Args:
          target_size: Desired vocab_size to approximate.
          token_counts: A dictionary of token counts, mapping string to int.
          min_val: An integer; lower bound for the minimum token count.
          max_val: An integer; upper bound for the minimum token count.
          max_subtoken_length: Maximum length of a subtoken. If this is not set,
            then the runtime and memory use of creating the vocab is quadratic in
            the length of the longest token. If this is set, then it is instead
            O(max_subtoken_length * length of longest token).
          reserved_tokens: List of reserved tokens. The global variable
            `RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this
            argument is `None`, it will use `RESERVED_TOKENS`.
          num_iterations: An integer; how many iterations of refinement.

        Returns:
          A SubwordTextEncoder instance.

        Raises:
          ValueError: If `min_val` is greater than `max_val`.
        """
        if min_val > max_val:
            raise ValueError("Lower bound for the minimum token count "
                             "is greater than the upper bound.")
        if target_size < 1:
            raise ValueError("Target size must be positive.")

        if reserved_tokens is None:
            reserved_tokens = RESERVED_TOKENS

        def bisect(min_val, max_val):
            """Bisection to find the right size."""
            present_count = (max_val + min_val) // 2
            logging.info("Trying min_count %d" % present_count)
            subtokenizer = cls()
            subtokenizer.build_from_token_counts(
                token_counts, present_count, num_iterations,
                max_subtoken_length=max_subtoken_length,
                reserved_tokens=reserved_tokens)

            # Being within 1% of the target size is ok.
            is_ok = abs(subtokenizer.vocab_size - target_size) * 100 < target_size
            # If min_val == max_val, we can't do any better than this.
            if is_ok or min_val >= max_val or present_count < 2:
                return subtokenizer

            if subtokenizer.vocab_size > target_size:
                other_subtokenizer = bisect(present_count + 1, max_val)
            else:
                other_subtokenizer = bisect(min_val, present_count - 1)

            if other_subtokenizer is None:
                return subtokenizer

            if (abs(other_subtokenizer.vocab_size - target_size) <
                    abs(subtokenizer.vocab_size - target_size)):
                return other_subtokenizer
            return subtokenizer

        return bisect(min_val, max_val)

    def build_from_token_counts(self,
                                token_counts,
                                min_count,
                                num_iterations=4,
                                reserved_tokens=None,
                                max_subtoken_length=None):
        """Train a SubwordTextEncoder based on a dictionary of word counts.

        Args:
          token_counts: a dictionary of Unicode strings to int.
          min_count: an integer - discard subtokens with lower counts.
          num_iterations: an integer.  how many iterations of refinement.
          reserved_tokens: List of reserved tokens. The global variable
            `RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this
            argument is `None`, it will use `RESERVED_TOKENS`.
          max_subtoken_length: Maximum length of a subtoken. If this is not set,
            then the runtime and memory use of creating the vocab is quadratic in
            the length of the longest token. If this is set, then it is instead
            O(max_subtoken_length * length of longest token).

        Raises:
          ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it
            is not clear what the space is being reserved for, or when it will be
            filled in.
        """
        if reserved_tokens is None:
            reserved_tokens = RESERVED_TOKENS
        else:
            # There is not complete freedom in replacing RESERVED_TOKENS.
            for default, proposed in zip(RESERVED_TOKENS, reserved_tokens):
                if default != proposed:
                    raise ValueError("RESERVED_TOKENS must be a prefix of "
                                     "reserved_tokens.")

        # Initialize the alphabet. Note, this must include reserved tokens or it can
        # result in encoding failures.
        alphabet_tokens = chain(six.iterkeys(token_counts),
                                [native_to_unicode(t) for t in reserved_tokens])

        self._init_alphabet_from_tokens(alphabet_tokens)

        # Bootstrap the initial list of subtokens with the characters from the
        # alphabet plus the escaping characters.
        self._init_subtokens_from_list(list(self._alphabet),
                                       reserved_tokens=reserved_tokens)

        # We build iteratively.  On each iteration, we segment all the words,
        # then count the resulting potential subtokens, keeping the ones
        # with high enough counts for our new vocabulary.
        if min_count < 1:
            min_count = 1
        for i in range(num_iterations):
            logging.info("Iteration {0}".format(i))

            # Collect all substrings of the encoded token that break along current
            # subtoken boundaries.
            subtoken_counts = collections.defaultdict(int)
            for token, count in six.iteritems(token_counts):
                escaped_token = _escape_token(token, self._alphabet)
                subtokens = self._escaped_token_to_subtoken_strings(escaped_token)
                start = 0
                for subtoken in subtokens:
                    last_position = len(escaped_token) + 1
                    if max_subtoken_length is not None:
                        last_position = min(last_position, start + max_subtoken_length)

                    for end in range(start + 1, last_position):
                        new_subtoken = escaped_token[start:end]
                        subtoken_counts[new_subtoken] += count
                    start += len(subtoken)

            # Array of sets of candidate subtoken strings, by length.
            len_to_subtoken_strings = []
            for subtoken_string, count in six.iteritems(subtoken_counts):
                lsub = len(subtoken_string)
                if count >= min_count:
                    while len(len_to_subtoken_strings) <= lsub:
                        len_to_subtoken_strings.append(set())
                    len_to_subtoken_strings[lsub].add(subtoken_string)

            # Consider the candidates longest to shortest, so that if we accept
            # a longer subtoken string, we can decrement the counts of its prefixes.
            new_subtoken_strings = []
            for lsub in range(len(len_to_subtoken_strings) - 1, 0, -1):
                subtoken_strings = len_to_subtoken_strings[lsub]
                for subtoken_string in subtoken_strings:
                    count = subtoken_counts[subtoken_string]
                    if count >= min_count:
                        # Exclude alphabet tokens here, as they must be included later,
                        # explicitly, regardless of count.
                        if subtoken_string not in self._alphabet:
                            new_subtoken_strings.append((count, subtoken_string))
                        for l in range(1, lsub):
                            subtoken_counts[subtoken_string[:l]] -= count

            # Include the alphabet explicitly to guarantee all strings are encodable.
            new_subtoken_strings.extend((subtoken_counts.get(a, 0), a)
                                        for a in self._alphabet)
            new_subtoken_strings.sort(reverse=True)

            # Reinitialize to the candidate vocabulary.
            new_subtoken_strings = [subtoken for _, subtoken in new_subtoken_strings]
            if reserved_tokens:
                new_subtoken_strings = reserved_tokens + new_subtoken_strings

            self._init_subtokens_from_list(new_subtoken_strings)
            logging.info("vocab_size = %d" % self.vocab_size)

    @property
    def all_subtoken_strings(self):
        """

        :return:
        """
        return tuple(self._all_subtoken_strings)

    def dump(self):
        """Debugging dump of the current subtoken vocabulary."""
        subtoken_strings = [(i, s)
                            for s, i in six.iteritems(self._subtoken_string_to_id)]
        print(u", ".join(u"{0} : '{1}'".format(i, s)
                         for i, s in sorted(subtoken_strings)))

    def _init_subtokens_from_list(self, subtoken_strings, reserved_tokens=None):
        """Initialize token information from a list of subtoken strings.

        Args:
          subtoken_strings: a list of subtokens
          reserved_tokens: List of reserved tokens. We must have `reserved_tokens`
            as None or the empty list, or else the global variable `RESERVED_TOKENS`
            must be a prefix of `reserved_tokens`.

        Raises:
          ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it
            is not clear what the space is being reserved for, or when it will be
            filled in.
        """
        if reserved_tokens is None:
            reserved_tokens = []

        if reserved_tokens:
            self._all_subtoken_strings = reserved_tokens + subtoken_strings
        else:
            self._all_subtoken_strings = subtoken_strings

        # we remember the maximum length of any subtoken to avoid having to
        # check arbitrarily long strings.
        self._max_subtoken_len = max([len(s) for s in subtoken_strings])
        self._subtoken_string_to_id = {
            s: i + len(reserved_tokens)
            for i, s in enumerate(subtoken_strings) if s
            }
        # Initialize the cache to empty.
        self._cache_size = 2 ** 20
        self._cache = [(None, None)] * self._cache_size

    def _init_alphabet_from_tokens(self, tokens):
        """Initialize alphabet from an iterable of token or subtoken strings."""
        # Include all characters from all tokens in the alphabet to guarantee that
        # any token can be encoded. Additionally, include all escaping characters.
        self._alphabet = {c for token in tokens for c in token}
        self._alphabet |= _ESCAPE_CHARS

    def _load_from_file_object(self, f):
        """Load from a file object.

        Args:
          f: File object to load vocabulary from
        """
        subtoken_strings = []
        for line in f:
            s = line.strip()
            # Some vocab files wrap words in single quotes, but others don't
            if ((s.startswith("'") and s.endswith("'")) or
                    (s.startswith("\"") and s.endswith("\""))):
                s = s[1:-1]
            subtoken_strings.append(native_to_unicode(s))
        self._init_subtokens_from_list(subtoken_strings)
        self._init_alphabet_from_tokens(subtoken_strings)

    def _load_from_file(self, filename):
        """Load from a vocab file."""
        if not os.path.exists(filename):
            raise ValueError("File %s not found" % filename)
        with open(filename, 'r') as f:
            self._load_from_file_object(f)

    def store_to_file(self, filename, add_single_quotes=True):
        """

        :param filename:
        :param add_single_quotes:
        :return:
        """
        with open(filename, "w") as f:
            for subtoken_string in self._all_subtoken_strings:
                if add_single_quotes:
                    f.write("'" + unicode_to_native(subtoken_string) + "'\n")
                else:
                    f.write(unicode_to_native(subtoken_string) + "\n")


class TokenTextEncoder(TextEncoder):
    """Encoder based on a user-supplied vocabulary (file or list)."""

    def __init__(self,
                 vocab_filename,
                 reverse=False,
                 vocab_list=None,
                 replace_oov="UNK",
                 num_reserved_ids=NUM_RESERVED_TOKENS):
        """Initialize from a file or list, one token per line.

        Handling of reserved tokens works as follows:
        - When initializing from a list, we add reserved tokens to the vocab.
        - When initializing from a file, we do not add reserved tokens to the vocab.
        - When saving vocab files, we save reserved tokens to the file.

        Args:
          vocab_filename: If not None, the full filename to read vocab from. If this
             is not None, then vocab_list should be None.
          reverse: Boolean indicating if tokens should be reversed during encoding
             and decoding.
          vocab_list: If not None, a list of elements of the vocabulary. If this is
             not None, then vocab_filename should be None.
          replace_oov: If not None, every out-of-vocabulary token seen when
             encoding will be replaced by this string (which must be in vocab).
          num_reserved_ids: Number of IDs to save for reserved tokens like <EOS>.
        """
        super(TokenTextEncoder, self).__init__(num_reserved_ids=num_reserved_ids)
        self._reverse = reverse
        self._replace_oov = replace_oov
        if vocab_filename:
            self._init_vocab_from_file(vocab_filename)
        else:
            assert vocab_list is not None
            self._init_vocab_from_list(vocab_list)

    @classmethod
    def build_from_corpus(cls, filenames, vocab_size):
        """

        :param filenames:
        :param vocab_size:
        :return:
        """

        def create_dictionary(names, lim=0):
            """
            :param name:
            :param lim:
            :return:
            """
            global_counter = collections.Counter()
            for name in names:
                fd = open(name)
                for line in fd:
                    words = line.strip().split()
                    words = filter(lambda x: x != "-1", words)
                    global_counter.update(words)
            if lim <= 2:
                lim = len(global_counter) + 3
            vocab_count = global_counter.most_common(lim - 3)
            total_counts = sum(global_counter.values())
            coverage = 100.0 * sum([count for word, count in vocab_count]) / total_counts
            logging.info("coverage: %s" % coverage)

            vocab_table = ["<pad>", "<EOS>"]
            for i, (word, count) in enumerate(vocab_count):
                vocab_table.append(word)
            vocab_table.append("UNK")
            return vocab_table

        if not isinstance(filenames, list): filenames = [filenames]
        vocab = cls(None,
                    vocab_list=create_dictionary(filenames, vocab_size),
                    replace_oov="UNK")
        return vocab

    def encode(self, s):
        """Converts a space-separated string of tokens to a list of ids."""
        sentence = s
        tokens = sentence.strip().split()
        if self._replace_oov is not None:
            tokens = [t if t in self._token_to_id else self._replace_oov
                      for t in tokens]
        ret = [self._token_to_id[tok] for tok in tokens]
        return ret[::-1] if self._reverse else ret

    def decode(self, ids, strip_extraneous=False):
        """

        :param ids:
        :param strip_extraneous:
        :return:
        """
        return " ".join(self.decode_list(ids))

    def decode_list(self, ids):
        """

        :param ids:
        :return:
        """
        seq = reversed(ids) if self._reverse else ids
        return [self._safe_id_to_token(i) for i in seq]

    @property
    def vocab_size(self):
        """

        :return:
        """
        return len(self._id_to_token)

    def _safe_id_to_token(self, idx):
        """

        :param idx:
        :return:
        """
        return self._id_to_token.get(idx, "ID_%d" % idx)

    def _init_vocab_from_file(self, filename):
        """Load vocab from a file.

        Args:
          filename: The file to load vocabulary from.
        """
        with open(filename, 'r') as f:
            tokens = [token.strip() for token in f.readlines()]

        def token_gen():
            """token gen"""
            for token in tokens:
                yield token

        self._init_vocab(token_gen(), add_reserved_tokens=False)

    def _init_vocab_from_list(self, vocab_list):
        """Initialize tokens from a list of tokens.

        It is ok if reserved tokens appear in the vocab list. They will be
        removed. The set of tokens in vocab_list should be unique.

        Args:
          vocab_list: A list of tokens.
        """

        def token_gen():
            """token gen"""
            for token in vocab_list:
                if token not in RESERVED_TOKENS:
                    yield token

        self._init_vocab(token_gen())

    def _init_vocab(self, token_generator, add_reserved_tokens=True):
        """Initialize vocabulary with tokens from token_generator."""

        self._id_to_token = {}
        non_reserved_start_index = 0

        if add_reserved_tokens:
            self._id_to_token.update(enumerate(RESERVED_TOKENS))
            non_reserved_start_index = len(RESERVED_TOKENS)

        self._id_to_token.update(
            enumerate(token_generator, start=non_reserved_start_index))

        # _token_to_id is the reverse of _id_to_token
        self._token_to_id = dict((v, k)
                                 for k, v in six.iteritems(self._id_to_token))

    def store_to_file(self, filename):
        """Write vocab file to disk.

        Vocab files have one token per line. The file ends in a newline. Reserved
        tokens are written to the vocab file as well.

        Args:
          filename: Full path of the file to store the vocab to.
        """
        with open(filename, "w") as f:
            for i in range(len(self._id_to_token)):
                f.write(self._id_to_token[i] + "\n")