gen_utils.py 6.5 KB
Newer Older
J
jiangbojian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import logging
import argparse
from text_encoder import SubwordTextEncoder, TokenTextEncoder
from text_encoder import EOS_ID


def get_or_generate_vocab(data_dir, tmp_dir, vocab_filename, vocab_size,
                          sources, file_byte_budget=1e6):
    """Generate a vocabulary from the datasets in sources."""

    def generate():
        """Generate lines for vocabulary generation."""
        logging.info("Generating vocab from: %s", str(sources))
        for source in sources:
            for lang_file in source[1]:
                logging.info("Reading file: %s" % lang_file)

                filepath = os.path.join(tmp_dir, lang_file)
                with open(filepath, mode="r") as source_file:
                    file_byte_budget_ = file_byte_budget
                    counter = 0
                    countermax = int(os.path.getsize(filepath) / file_byte_budget_ / 2)
                    logging.info("countermax: %d" % countermax)
                    for line in source_file:
                        if counter < countermax:
                            counter += 1
                        else:
                            if file_byte_budget_ <= 0:
                                break
                            line = line.strip()
                            file_byte_budget_ -= len(line)
                            counter = 0
                            yield line

    return get_or_generate_vocab_inner(data_dir, vocab_filename, vocab_size,
                                       generate())


def get_or_generate_vocab_inner(data_dir, vocab_filename, vocab_size,
                                generator, max_subtoken_length=None,
                                reserved_tokens=None):
    """Inner implementation for vocab generators.

    Args:
      data_dir: The base directory where data and vocab files are stored. If None,
        then do not save the vocab even if it doesn't exist.
      vocab_filename: relative filename where vocab file is stored
      vocab_size: target size of the vocabulary constructed by SubwordTextEncoder
      generator: a generator that produces tokens from the vocabulary
      max_subtoken_length: an optional integer.  Set this to a finite value to
        avoid quadratic costs during vocab building.
      reserved_tokens: List of reserved tokens. `text_encoder.RESERVED_TOKENS`
        should be a prefix of `reserved_tokens`. If `None`, defaults to
        `RESERVED_TOKENS`.

    Returns:
      A SubwordTextEncoder vocabulary object.
    """
    if data_dir and vocab_filename:
        vocab_filepath = os.path.join(data_dir, vocab_filename)
        if os.path.exists(vocab_filepath):
            logging.info("Found vocab file: %s", vocab_filepath)
            return SubwordTextEncoder(vocab_filepath)
    else:
        vocab_filepath = None

    logging.info("Generating vocab file: %s", vocab_filepath)
    vocab = SubwordTextEncoder.build_from_generator(
        generator, vocab_size, max_subtoken_length=max_subtoken_length,
        reserved_tokens=reserved_tokens)

    if vocab_filepath:
        if not os.path.exists(data_dir):
            os.makedirs(data_dir)
        vocab.store_to_file(vocab_filepath)

    return vocab


def txt_line_iterator(fname):
    """
    generator for line
    :param fname:
    :return:
    """
    with open(fname, 'r') as f:
        for line in f:
            yield line.strip()


def txt2txt_generator(source_fname, target_fname):
    """

    :param source_fname:
    :param target_fname:
    :return:
    """
    for source, target in zip(
            txt_line_iterator(source_fname),
            txt_line_iterator(target_fname)
    ):
        yield {"inputs": source, "targets": target}


def txt2txt_encoder(sample_generator, vocab, target_vocab=None):
    """

    :param sample_generator:
    :param vocab:
    :param target_vocab:
    :return:
    """
    target_vocab = target_vocab or vocab
    for sample in sample_generator:
        sample["inputs"] = vocab.encode(sample["inputs"])
        sample["inputs"].append(EOS_ID)
        sample["targets"] = target_vocab.encode(sample["targets"])
        sample["targets"].append(EOS_ID)
        yield sample


def txt_encoder(filename, batch_size=1, vocab=None):
    """

    :param sample_generator:
    :param vocab:
    :return:
    """
    def pad_mini_batch(batch):
        """

        :param batch:
        :return:
        """
        lens = map(lambda x: len(x), batch)
        max_len = max(lens)
        for i in range(len(batch)):
            batch[i] = batch[i] + [0] * (max_len - lens[i])
        return batch

    fp = open(filename, 'r')
    samples = []
    batches = []
    ct = 0
    for sample in fp:
        sample = sample.strip()

        if vocab:
            sample = vocab.encode(sample)
        else:
            sample = [int(s) for s in sample]
        #sample.append(EOS_ID)
        batches.append(sample)
        ct += 1
        if ct % batch_size == 0:
            batches = pad_mini_batch(batches)
            samples.extend(batches)
            batches = []
    if ct % batch_size != 0:
        batches += [batches[-1]] * (batch_size - ct % batch_size)
        batches = pad_mini_batch(batches)
        samples.extend(batches)
    return samples

if __name__ == "__main__":
    parser = argparse.ArgumentParser("Tips for generating testset")
    parser.add_argument(
        "--vocab",
        type=str,
        required=True,
        help="The path of source vocab.")
    
    parser.add_argument(
        "--testset",
        type=str,
        required=True,
        help="The path of testset.")

    parser.add_argument(
        "--output",
        type=str,
        required=True,
        help="The path of result.")

    args = parser.parse_args()
    token = TokenTextEncoder(args.vocab)
    samples = txt_encoder(args.testset, 1, token)

    with open(args.output, 'w') as f:
        for sample in samples:
            res = [str(item) for item in sample]
            f.write("%s\n" % " ".join(res))