launch.py 5.0 KB
Newer Older
J
jiangbojian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import subprocess
import commands
import os
import six
import copy
import argparse
import time

from args import ArgumentGroup, print_arguments, inv_arguments

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
multip_g = ArgumentGroup(parser, "multiprocessing", 
        "start paddle training using multi-processing mode.")
multip_g.add_arg("node_ips", str, None, 
        "paddle trainer ips")
multip_g.add_arg("node_id", int, None, 
        "the trainer id of the node for multi-node distributed training.")
multip_g.add_arg("print_config", bool, True, 
        "print the config of multi-processing mode.")
multip_g.add_arg("current_node_ip", str, None, 
        "the ip of current node.")
multip_g.add_arg("split_log_path", str, "log",
        "log path for each trainer.")
multip_g.add_arg("log_prefix", str, "",
        "the prefix name of job log.")
multip_g.add_arg("nproc_per_node", int, 8, 
        "the number of process to use on each node.")
multip_g.add_arg("selected_gpus", str, "0,1,2,3,4,5,6,7", 
        "the gpus selected to use.")
multip_g.add_arg("training_script", str, None, "the program/script to be lauched "
        "in parallel followed by all the arguments", positional_arg=True)
multip_g.add_arg("training_script_args", str, None,
        "training script args", positional_arg=True, nargs=argparse.REMAINDER)
# yapf: enable


def start_procs(args):
    """
        start_procs
    """
    procs = []
    log_fns = []

    default_env = os.environ.copy()

    node_id = args.node_id
    node_ips = [x.strip() for x in args.node_ips.split(',')]
    current_ip = args.current_node_ip
    num_nodes = len(node_ips)
    selected_gpus = [x.strip() for x in args.selected_gpus.split(',')]
    selected_gpu_num = len(selected_gpus)

    all_trainer_endpoints = ""
    for ip in node_ips:
        for i in range(args.nproc_per_node):
            if all_trainer_endpoints != "":
                all_trainer_endpoints += ","
            all_trainer_endpoints += "%s:617%d" % (ip, i)

    nranks = num_nodes * args.nproc_per_node
    gpus_per_proc = args.nproc_per_node % selected_gpu_num 
    if gpus_per_proc == 0:
        gpus_per_proc =  selected_gpu_num / args.nproc_per_node
    else:
        gpus_per_proc =  selected_gpu_num / args.nproc_per_node + 1

    selected_gpus_per_proc = [selected_gpus[i:i + gpus_per_proc] 
                                for i in range(0, len(selected_gpus), gpus_per_proc)]

    if args.print_config:
        print("all_trainer_endpoints: ", all_trainer_endpoints, 
              ", node_id: ", node_id,
              ", current_ip: ", current_ip,
              ", num_nodes: ", num_nodes,
              ", node_ips: ", node_ips,
              ", gpus_per_proc: ", gpus_per_proc,
              ", selected_gpus_per_proc: ", selected_gpus_per_proc,
              ", nranks: ", nranks)

    current_env = copy.copy(default_env)
    procs = []
    cmds = []
    log_fns = []
    for i in range(0, args.nproc_per_node):
        trainer_id = node_id * args.nproc_per_node + i
        current_env.update({
            "FLAGS_selected_gpus": "%s" % ",".join([str(s) for s in selected_gpus_per_proc[i]]),
            "PADDLE_TRAINER_ID": "%d" % trainer_id,
            "PADDLE_CURRENT_ENDPOINT": "%s:617%d" % (current_ip, i),
            "PADDLE_TRAINERS_NUM": "%d" % nranks,
            "PADDLE_TRAINER_ENDPOINTS": all_trainer_endpoints,
            "PADDLE_NODES_NUM": "%d" % num_nodes
        })

        cmd = [sys.executable, "-u",
               args.training_script] + args.training_script_args
        cmds.append(cmd)

        if args.split_log_path:
            fn = open("%s/%sjob.log.%d" % (args.split_log_path, args.log_prefix, trainer_id), "a")
            log_fns.append(fn)
            process = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn)
        else:
            process = subprocess.Popen(cmd, env=current_env)
        procs.append(process)

    for i in range(len(procs)):
        proc = procs[i]
        proc.wait()
        if len(log_fns) > 0:
            log_fns[i].close()
        if proc.returncode != 0:    
            raise subprocess.CalledProcessError(returncode=procs[i].returncode,
                                                cmd=cmds[i])
        else:
            print("proc %d finsh" % i)


def main(args):
    """
        main_func
    """
    if args.print_config:
        print_arguments(args)
    start_procs(args)


if __name__ == "__main__":
    lanch_args = parser.parse_args()
    main(lanch_args)