infer.py 16.3 KB
Newer Older
J
jiangbojian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import ast
import multiprocessing
import numpy as np
import os
from functools import partial

import contextlib
import time
import paddle.fluid.profiler as profiler

import paddle
import paddle.fluid as fluid

import forward_model
import reader
import sys
from config import *
from forward_model import wrap_encoder as encoder
from forward_model import wrap_decoder as decoder
from forward_model import forward_fast_decode
from dense_model import dense_fast_decode
from relative_model import relative_fast_decode
from forward_model import forward_position_encoding_init
from reader import *


def parse_args():
    """
        parse_args
    """
    parser = argparse.ArgumentParser("Training for Transformer.")
    parser.add_argument(
        "--val_file_pattern",
        type=str,
        required=True,
        help="The pattern to match test data files.")
    parser.add_argument(
        "--batch_size",
        type=int,
        default=50,
        help="The number of examples in one run for sequence generation.")
    parser.add_argument(
        "--pool_size",
        type=int,
        default=10000,
        help="The buffer size to pool data.")
    parser.add_argument(
        "--special_token",
        type=str,
        default=["<s>", "<e>", "<unk>"],
        nargs=3,
        help="The <bos>, <eos> and <unk> tokens in the dictionary.")
    parser.add_argument(
        "--token_delimiter",
        type=lambda x: str(x.encode().decode("unicode-escape")),
        default=" ",
        help="The delimiter used to split tokens in source or target sentences. "
        "For EN-DE BPE data we provided, use spaces as token delimiter. ")
    parser.add_argument(
        "--use_mem_opt",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to use memory optimization.")
    parser.add_argument(
        "--use_py_reader",
        type=ast.literal_eval,
        default=False,
        help="The flag indicating whether to use py_reader.")
    parser.add_argument(
        "--use_parallel_exe",
        type=ast.literal_eval,
        default=False,
        help="The flag indicating whether to use ParallelExecutor.")
    parser.add_argument(
        "--use_candidate",
        type=ast.literal_eval,
        default=False,
        help="The flag indicating whether to use candidates.")
    parser.add_argument(
        "--common_ids",
        type=str,
        default="",
        help="The file path of common ids.")
    parser.add_argument(
        'opts',
        help='See config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
    parser.add_argument(
        "--use_delay_load",
        type=ast.literal_eval,
        default=True,
        help=
        "The flag indicating whether to load all data into memories at once.")
    parser.add_argument(
        "--vocab_size",
        type=str,
        required=True,
        help="Size of Vocab.")
    parser.add_argument(
        "--infer_batch_size",
        type=int,
        help="Infer batch_size")
    parser.add_argument(
        "--decode_alpha",
        type=float,
        help="decode_alpha")

    args = parser.parse_args()
    # Append args related to dict
    #src_dict = reader.DataReader.load_dict(args.src_vocab_fpath)
    #trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath)
    #dict_args = [
    #    "src_vocab_size", str(len(src_dict)), "trg_vocab_size",
    #    str(len(trg_dict)), "bos_idx", str(src_dict[args.special_token[0]]),
    #    "eos_idx", str(src_dict[args.special_token[1]]), "unk_idx",
    #    str(src_dict[args.special_token[2]])
    #]
    voc_size = args.vocab_size
    dict_args = [
        "src_vocab_size", voc_size,
        "trg_vocab_size", voc_size,
        "bos_idx", str(0),
        "eos_idx", str(1),
        "unk_idx", str(int(voc_size) - 1)
    ]
    merge_cfg_from_list(args.opts + dict_args,
                        [InferTaskConfig, ModelHyperParams])
    return args
    

def post_process_seq(seq,
                     bos_idx=ModelHyperParams.bos_idx,
                     eos_idx=ModelHyperParams.eos_idx,
                     output_bos=InferTaskConfig.output_bos,
                     output_eos=InferTaskConfig.output_eos):
    """
    Post-process the beam-search decoded sequence. Truncate from the first
    <eos> and remove the <bos> and <eos> tokens currently.
    """
    eos_pos = len(seq) - 1
    for i, idx in enumerate(seq):
        if idx == eos_idx:
            eos_pos = i
            break
    seq = [
        idx for idx in seq[:eos_pos + 1]
        if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx)
    ]
    return seq


def prepare_batch_input(insts, data_input_names, src_pad_idx, bos_idx, n_head,
                        d_model):
    """
    Put all padded data needed by beam search decoder into a dict.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    source_length = np.asarray([src_max_len], dtype="int64")
    src_word = src_word.reshape(-1, src_max_len, 1)
    src_pos = src_pos.reshape(-1, src_max_len, 1)

    data_input_dict = dict(
        zip(data_input_names, [
            src_word, src_pos, src_slf_attn_bias, source_length
        ]))

    return data_input_dict


def prepare_feed_dict_list(data_generator, count):
    """
    Prepare the list of feed dict for multi-devices.
    """
    feed_dict_list = []
    if data_generator is not None:  # use_py_reader == False
        data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields
        data = next(data_generator)
        for idx, data_buffer in enumerate(data):
            data_input_dict = prepare_batch_input(
                data_buffer, data_input_names, ModelHyperParams.bos_idx,
                ModelHyperParams.bos_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model)
            feed_dict_list.append(data_input_dict)
    return feed_dict_list if len(feed_dict_list) == count else None


def prepare_dense_feed_dict_list(data_generator, count):
    """
    Prepare the list of feed dict for multi-devices.
    """
    feed_dict_list = []
    if data_generator is not None:  # use_py_reader == False
        data_input_names = dense_encoder_data_input_fields + fast_decoder_data_input_fields
        data = next(data_generator)
        for idx, data_buffer in enumerate(data):
            data_input_dict = prepare_batch_input(
                data_buffer, data_input_names, DenseModelHyperParams.bos_idx,
                DenseModelHyperParams.bos_idx, DenseModelHyperParams.n_head,
                DenseModelHyperParams.d_model)
            feed_dict_list.append(data_input_dict)
    return feed_dict_list if len(feed_dict_list) == count else None


def prepare_infer_feed_dict_list(data_generator, count):
    feed_dict_list = []
    if data_generator is not None:  # use_py_reader == False
        data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields
        dense_data_input_names = dense_encoder_data_input_fields + fast_decoder_data_input_fields
        data = next(data_generator)
        for idx, data_buffer in enumerate(data):
            dense_data_input_dict = prepare_batch_input(
                data_buffer, dense_data_input_names, DenseModelHyperParams.bos_idx,
                DenseModelHyperParams.bos_idx, DenseModelHyperParams.n_head,
                DenseModelHyperParams.d_model)

            data_input_dict = prepare_batch_input(data_buffer, data_input_names, 
                ModelHyperParams.bos_idx, ModelHyperParams.bos_idx, 
                ModelHyperParams.n_head, ModelHyperParams.d_model)
            
            for key in dense_data_input_dict:
                if key not in data_input_dict:
                    data_input_dict[key] = dense_data_input_dict[key]
            
            feed_dict_list.append(data_input_dict)
    return feed_dict_list if len(feed_dict_list) == count else None



def get_trans_res(batch_size, out_list, final_list):
    """
        Get trans
    """
    for index in xrange(batch_size):
        seq = out_list[index][0] #top1 seq

        if 1 not in seq:
            res = seq[1:-1]
        else:
            res = seq[1:seq.index(1)]

        res = map(str, res)
        final_list.append(" ".join(res))


def fast_infer(args):
    """
    Inference by beam search decoder based solely on Fluid operators.
    """
    test_prog = fluid.Program()
    startup_prog = fluid.Program()

    #with fluid.program_guard(test_prog, startup_prog):
    with fluid.unique_name.guard("new_forward"):
        out_ids1, out_scores1 = forward_fast_decode(
            ModelHyperParams.src_vocab_size,
            ModelHyperParams.trg_vocab_size,
            ModelHyperParams.max_length + 50,
            ModelHyperParams.n_layer,
            ModelHyperParams.n_head,
            ModelHyperParams.d_key,
            ModelHyperParams.d_value,
            ModelHyperParams.d_model,
            ModelHyperParams.d_inner_hid,
            ModelHyperParams.prepostprocess_dropout,
            ModelHyperParams.attention_dropout,
            ModelHyperParams.relu_dropout,
            ModelHyperParams.preprocess_cmd,
            ModelHyperParams.postprocess_cmd,
            ModelHyperParams.weight_sharing,
            ModelHyperParams.embedding_sharing,
            InferTaskConfig.beam_size,
            args.infer_batch_size,
            InferTaskConfig.max_out_len,
            args.decode_alpha,
            ModelHyperParams.eos_idx,
            params_type="new"
            )
    
    with fluid.unique_name.guard("new_relative_position"):
        out_ids2, out_scores2 = relative_fast_decode(
            ModelHyperParams.src_vocab_size,
            ModelHyperParams.trg_vocab_size,
            ModelHyperParams.max_length + 50,
            ModelHyperParams.n_layer,
            ModelHyperParams.n_head,
            ModelHyperParams.d_key,
            ModelHyperParams.d_value,
            ModelHyperParams.d_model,
            ModelHyperParams.d_inner_hid,
            ModelHyperParams.prepostprocess_dropout,
            ModelHyperParams.attention_dropout,
            ModelHyperParams.relu_dropout,
            ModelHyperParams.preprocess_cmd,
            ModelHyperParams.postprocess_cmd,
            ModelHyperParams.weight_sharing,
            ModelHyperParams.embedding_sharing,
            InferTaskConfig.beam_size,
            args.infer_batch_size,
            InferTaskConfig.max_out_len,
            args.decode_alpha,
            ModelHyperParams.eos_idx,
            params_type="new"
            )

    DenseModelHyperParams.src_vocab_size = ModelHyperParams.src_vocab_size
    DenseModelHyperParams.trg_vocab_size = ModelHyperParams.trg_vocab_size
    DenseModelHyperParams.weight_sharing = ModelHyperParams.weight_sharing
    DenseModelHyperParams.embedding_sharing = ModelHyperParams.embedding_sharing 
    with fluid.unique_name.guard("new_dense"):
        out_ids3, out_scores3 = dense_fast_decode(
            DenseModelHyperParams.src_vocab_size,
            DenseModelHyperParams.trg_vocab_size,
            DenseModelHyperParams.max_length + 50,
            DenseModelHyperParams.n_layer,
            DenseModelHyperParams.enc_n_layer,
            DenseModelHyperParams.n_head,
            DenseModelHyperParams.d_key,
            DenseModelHyperParams.d_value,
            DenseModelHyperParams.d_model,
            DenseModelHyperParams.d_inner_hid,
            DenseModelHyperParams.prepostprocess_dropout,
            DenseModelHyperParams.attention_dropout,
            DenseModelHyperParams.relu_dropout,
            DenseModelHyperParams.preprocess_cmd,
            DenseModelHyperParams.postprocess_cmd,
            DenseModelHyperParams.weight_sharing,
            DenseModelHyperParams.embedding_sharing,
            InferTaskConfig.beam_size,
            args.infer_batch_size,
            InferTaskConfig.max_out_len,
            args.decode_alpha,
            ModelHyperParams.eos_idx,
            params_type="new"
            )

    test_prog = fluid.default_main_program().clone(for_test=True)
    # This is used here to set dropout to the test mode.

    if InferTaskConfig.use_gpu:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    fluid.io.load_params(
        exe,
        InferTaskConfig.model_path,
        main_program=test_prog)


    if args.use_mem_opt:
        fluid.memory_optimize(test_prog)

    exec_strategy = fluid.ExecutionStrategy()
    # For faster executor
    exec_strategy.use_experimental_executor = True
    exec_strategy.num_threads = 1
    build_strategy = fluid.BuildStrategy()
    
    # data reader settings for inference
    args.use_token_batch = False
    #args.sort_type = reader.SortType.NONE
    args.shuffle = False
    args.shuffle_batch = False
    
    dev_count = 1
    lines_cnt = len(open(args.val_file_pattern, 'r').readlines())
    data_reader = line_reader(args.val_file_pattern, args.infer_batch_size, dev_count,
                    token_delimiter=args.token_delimiter,
                    max_len=ModelHyperParams.max_length,
                    parse_line=parse_src_line)

    test_data = prepare_data_generator(
        args,
        is_test=True,
        count=dev_count,
        pyreader=None,
        batch_size=args.infer_batch_size, data_reader=data_reader)
    
    data_generator = test_data()
    iter_num = 0

    if not os.path.exists("trans"):
        os.mkdir("trans")
    
    model_name = InferTaskConfig.model_path.split("/")[-1]
    forward_res = open(os.path.join("trans", "forward_%s" % model_name), 'w')
    relative_res = open(os.path.join("trans", "relative_%s" % model_name), 'w')
    dense_res = open(os.path.join("trans", "dense_%s" % model_name), 'w')

    forward_list = []
    relative_list = []
    dense_list = []
    with profile_context(False):
        while True:
            try:
                feed_dict_list = prepare_infer_feed_dict_list(data_generator, dev_count)

                forward_seq_ids, relative_seq_ids, dense_seq_ids = exe.run(
                    program=test_prog,
                    fetch_list=[out_ids1.name, out_ids2.name, out_ids3.name],
                    feed=feed_dict_list[0]
                    if feed_dict_list is not None else None,
                    return_numpy=False,
                    use_program_cache=False)

                fseq_ids = np.asarray(forward_seq_ids).tolist()
                rseq_ids = np.asarray(relative_seq_ids).tolist()
                dseq_ids = np.asarray(dense_seq_ids).tolist()
                
                get_trans_res(args.infer_batch_size, fseq_ids, forward_list)
                get_trans_res(args.infer_batch_size, rseq_ids, relative_list)
                get_trans_res(args.infer_batch_size, dseq_ids, dense_list)

                
            except (StopIteration, fluid.core.EOFException):
                break
        forward_list = forward_list[:lines_cnt]
        relative_list = relative_list[:lines_cnt]
        dense_list = dense_list[:lines_cnt]

        forward_res.writelines("\n".join(forward_list))
        forward_res.flush()
        forward_res.close()

        relative_res.writelines("\n".join(relative_list))
        relative_res.flush()
        relative_res.close()

        dense_res.writelines("\n".join(dense_list))
        dense_res.flush()
        dense_res.close()


@contextlib.contextmanager
def profile_context(profile=True):
    """
        profile_context
    """
    if profile:
        with profiler.profiler('All', 'total', './profile_dir/profile_file_tmp'):
            yield
    else:
        yield


if __name__ == "__main__":
    args = parse_args()
    fast_infer(args)