dense_model.py 34.2 KB
Newer Older
J
jiangbojian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

from functools import partial
import numpy as np

import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.layer_helper import LayerHelper as LayerHelper

from config import *
from beam_search import BeamSearch

INF = 1. * 1e5

def layer_norm(x, begin_norm_axis=1, epsilon=1e-6, param_attr=None, bias_attr=None):
    """
        layer_norm
    """
    helper = LayerHelper('layer_norm', **locals())
    mean = layers.reduce_mean(x, dim=begin_norm_axis, keep_dim=True)
    shift_x = layers.elementwise_sub(x=x, y=mean, axis=0)
    variance = layers.reduce_mean(layers.square(shift_x), dim=begin_norm_axis, keep_dim=True)
    r_stdev = layers.rsqrt(variance + epsilon)
    norm_x = layers.elementwise_mul(x=shift_x, y=r_stdev, axis=0)

    param_shape = [reduce(lambda x, y: x * y, norm_x.shape[begin_norm_axis:])]
    param_dtype = norm_x.dtype
    scale = helper.create_parameter(
        attr=param_attr,
        shape=param_shape,
        dtype=param_dtype,
        default_initializer=fluid.initializer.Constant(1.))
    bias = helper.create_parameter(
        attr=bias_attr,
        shape=param_shape,
        dtype=param_dtype,
        is_bias=True,
        default_initializer=fluid.initializer.Constant(0.))

    out = layers.elementwise_mul(x=norm_x, y=scale, axis=-1)
    out = layers.elementwise_add(x=out, y=bias, axis=-1)

    return out

def dense_position_encoding_init(n_position, d_pos_vec):
    """
    Generate the initial values for the sinusoid position encoding table.
    """
    channels = d_pos_vec
    position = np.arange(n_position)
    num_timescales = channels // 2
    log_timescale_increment = (np.log(float(1e4) / float(1)) /
                               (num_timescales - 1))
    inv_timescales = np.exp(np.arange(
        num_timescales) * -log_timescale_increment)
        #num_timescales)) * -log_timescale_increment
    scaled_time = np.expand_dims(position, 1) * np.expand_dims(inv_timescales,
                                                               0)
    signal = np.concatenate([np.sin(scaled_time), np.cos(scaled_time)], axis=1)
    signal = np.pad(signal, [[0, 0], [0, np.mod(channels, 2)]], 'constant')
    position_enc = signal
    return position_enc.astype("float32")


def multi_head_attention(queries,
                         keys,
                         values,
                         attn_bias,
                         d_key,
                         d_value,
                         d_model,
                         n_head=1,
                         dropout_rate=0.,
                         cache=None,
                         attention_type="dot_product",):
    """
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
    """
    keys = queries if keys is None else keys
    values = keys if values is None else values

    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
            "Inputs: quries, keys and values should all be 3-D tensors.")

    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
        """
        Add linear projection to queries, keys, and values.
        """
        q = layers.fc(input=queries,
                      size=d_key * n_head,
                      bias_attr=False,
                      num_flatten_dims=2)
        k = layers.fc(input=keys,
                      size=d_key * n_head,
                      bias_attr=False,
                      num_flatten_dims=2)
        v = layers.fc(input=values,
                      size=d_value * n_head,
                      bias_attr=False,
                      num_flatten_dims=2)
        return q, k, v

    def __split_heads(x, n_head):
        """
        Reshape the last dimension of inpunt tensor x so that it becomes two
        dimensions and then transpose. Specifically, input a tensor with shape
        [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
        """
        if n_head == 1:
            return x

        hidden_size = x.shape[-1]
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        reshaped = layers.reshape(
            x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)

        # permuate the dimensions into:
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        """
        Transpose and then reshape the last two dimensions of inpunt tensor x
        so that it becomes one dimension, which is reverse to __split_heads.
        """
        if len(x.shape) == 3: return x
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        return layers.reshape(
            x=trans_x,
            shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
            inplace=True)

    def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
        """
        Scaled Dot-Product Attention
        """
        scaled_q = layers.scale(x=q, scale=d_key ** -0.5)
        product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
        if dropout_rate:
            weights = layers.dropout(
                weights,
                dropout_prob=dropout_rate,
                seed=DenseModelHyperParams.dropout_seed,
                is_test=False, dropout_implementation='upscale_in_train')
        out = layers.matmul(weights, v)
        return out

    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)

    if cache is not None:  # use cache and concat time steps
        # Since the inplace reshape in __split_heads changes the shape of k and
        # v, which is the cache input for next time step, reshape the cache
        # input from the previous time step first.
        k = layers.concat([cache['k'], k], axis=1)
        v = layers.concat([cache['v'], v], axis=1)
        layers.assign(k, cache['k'])
        layers.assign(v, cache['v'])

    q = __split_heads(q, n_head)
    k = __split_heads(k, n_head)
    v = __split_heads(v, n_head)

    ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, #d_model,
                                                  dropout_rate)

    out = __combine_heads(ctx_multiheads)

    # Project back to the model size.
    proj_out = layers.fc(input=out,
                         size=d_model,
                         bias_attr=False,
                         num_flatten_dims=2)
    return proj_out


def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate):
    """
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
    """
    hidden = layers.fc(input=x,
                       size=d_inner_hid,
                       num_flatten_dims=2,
                       act="relu")
    if dropout_rate:
        hidden = layers.dropout(
            hidden,
            dropout_prob=dropout_rate,
            seed=DenseModelHyperParams.dropout_seed,
            is_test=False, dropout_implementation='upscale_in_train')
    out = layers.fc(input=hidden, size=d_hid, num_flatten_dims=2)
    return out


def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
    """
    Add residual connection, layer normalization and droput to the out tensor
    optionally according to the value of process_cmd.
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
        if cmd == "a":  # add residual connection
            out = out + prev_out if prev_out else out
        elif cmd == "n":  # add layer normalization
            out = layer_norm(
                out,
                begin_norm_axis=len(out.shape) - 1,
                epsilon=1e-6,
                param_attr=fluid.initializer.Constant(1.),
                bias_attr=fluid.initializer.Constant(0.))
        elif cmd == "d":  # add dropout
            if dropout_rate:
                out = layers.dropout(
                    out,
                    dropout_prob=dropout_rate,
                    seed=DenseModelHyperParams.dropout_seed,
                    is_test=False, dropout_implementation='upscale_in_train')
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


def prepare_encoder_decoder(src_word,
                            src_pos,
                            src_vocab_size,
                            src_emb_dim,
                            src_max_len,
                            dropout_rate=0.,
                            word_emb_param_name=None,
                            training=True,
                            pos_enc_param_name=None, 
                            is_src=True,
                            params_type="normal"):
    """Add word embeddings and position encodings.
    The output tensor has a shape of:
    [batch_size, max_src_length_in_batch, d_model].
    This module is used at the bottom of the encoder stacks.
    """
    assert params_type == "fixed" or params_type == "normal" or params_type == "new"
    pre_name = "densedense"

    if params_type == "fixed":
        pre_name = "fixed_densefixed_dense"
    elif params_type == "new":
        pre_name = "new_densenew_dense"

    src_word_emb = layers.embedding(
        src_word,
        size=[src_vocab_size, src_emb_dim],
        padding_idx=DenseModelHyperParams.bos_idx,  # set embedding of bos to 0
        param_attr=fluid.ParamAttr(
            name = pre_name + word_emb_param_name,
            initializer=fluid.initializer.Normal(0., src_emb_dim ** -0.5)))#, is_sparse=True)
    if not is_src and training:
        src_word_emb = layers.pad(src_word_emb, [0, 0, 1, 0, 0, 0])
    src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim ** 0.5)
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        param_attr=fluid.ParamAttr(
            trainable=False, name = pre_name + pos_enc_param_name))
    src_pos_enc.stop_gradient = True
    enc_input = src_word_emb + src_pos_enc
    return layers.dropout(
        enc_input,
        dropout_prob=dropout_rate,
        seed=DenseModelHyperParams.dropout_seed,
        is_test=False, dropout_implementation='upscale_in_train') if dropout_rate else enc_input


prepare_encoder = partial(
    prepare_encoder_decoder, pos_enc_param_name="src_pos_enc_table", is_src=True)
prepare_decoder = partial(
    prepare_encoder_decoder, pos_enc_param_name="trg_pos_enc_table", is_src=False)


def encoder_layer(enc_input,
                  attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
                  prepostprocess_dropout,
                  attention_dropout,
                  relu_dropout,
                  preprocess_cmd="n",
                  postprocess_cmd="da"):
    """The encoder layers that can be stacked to form a deep encoder.
    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
    """
    attn_output = multi_head_attention(
        pre_process_layer(enc_input, preprocess_cmd,
                          prepostprocess_dropout), None, None, attn_bias, d_key,
        d_value, d_model, n_head, attention_dropout)
    attn_output = post_process_layer(enc_input, attn_output, postprocess_cmd,
                                     prepostprocess_dropout)
    ffd_output = positionwise_feed_forward(
        pre_process_layer(attn_output, preprocess_cmd, prepostprocess_dropout),
        d_inner_hid, d_model, relu_dropout)
    return post_process_layer(attn_output, ffd_output, postprocess_cmd,
                              prepostprocess_dropout)


def encoder(enc_input,
            attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd="n",
            postprocess_cmd="da"):
    """
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
    """
    stack_layer_norm = []
    bottom_embedding_output = pre_process_layer(enc_input, preprocess_cmd, prepostprocess_dropout)
    stack_layer_norm.append(bottom_embedding_output)

    #zeros = layers.zeros_like(enc_input)
    #ones_flag = layers.equal(zeros, zeros)
    #ones = layers.cast(ones_flag, 'float32')

    for i in range(n_layer):
        enc_output = encoder_layer(
            enc_input,
            attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd, )
        enc_output_2 = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout)
        stack_layer_norm.append(enc_output_2)
         
        pre_output = bottom_embedding_output
        for index in xrange(1, len(stack_layer_norm)):
            pre_output = pre_output + stack_layer_norm[index]

        # pre_mean
        enc_input = pre_output / len(stack_layer_norm)

    enc_output = pre_process_layer(enc_output, preprocess_cmd,
                                   prepostprocess_dropout)
    return enc_output


def decoder_layer(dec_input,
                  enc_output,
                  slf_attn_bias,
                  dec_enc_attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
                  prepostprocess_dropout,
                  attention_dropout,
                  relu_dropout,
                  preprocess_cmd,
                  postprocess_cmd,
                  cache=None):
    """ The layer to be stacked in decoder part.
    The structure of this module is similar to that in the encoder part except
    a multi-head attention is added to implement encoder-decoder attention.
    """
    slf_attn_output = multi_head_attention(
        pre_process_layer(dec_input, preprocess_cmd, prepostprocess_dropout),
        None,
        None,
        slf_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        attention_dropout,
        cache, )
    slf_attn_output = post_process_layer(
        dec_input,
        slf_attn_output,
        postprocess_cmd,
        prepostprocess_dropout, )
    enc_attn_output = multi_head_attention(
        pre_process_layer(slf_attn_output, preprocess_cmd,
                          prepostprocess_dropout),
        enc_output,
        enc_output,
        dec_enc_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        attention_dropout, )
    enc_attn_output = post_process_layer(
        slf_attn_output,
        enc_attn_output,
        postprocess_cmd,
        prepostprocess_dropout, )
    ffd_output = positionwise_feed_forward(
        pre_process_layer(enc_attn_output, preprocess_cmd,
                          prepostprocess_dropout),
        d_inner_hid,
        d_model,
        relu_dropout, )
    dec_output = post_process_layer(
        enc_attn_output,
        ffd_output,
        postprocess_cmd,
        prepostprocess_dropout, )
    return dec_output


def decoder(dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd,
            caches=None):
    """
    The decoder is composed of a stack of identical decoder_layer layers.
    """
    for i in range(n_layer):
        dec_output = decoder_layer(
            dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd,
            cache=None if caches is None else caches[i])
        dec_input = dec_output
    dec_output = pre_process_layer(dec_output, preprocess_cmd,
                                   prepostprocess_dropout)
    return dec_output


def make_all_inputs(input_fields):
    """
    Define the input data layers for the transformer model.
    """
    inputs = []
    for input_field in input_fields:
        input_var = layers.data(
            name=input_field,
            shape=input_descs[input_field][0],
            dtype=input_descs[input_field][1],
            lod_level=input_descs[input_field][2]
            if len(input_descs[input_field]) == 3 else 0,
            append_batch_size=False)
        inputs.append(input_var)
    return inputs

def make_all_py_reader_inputs(input_fields, is_test=False):
    """
    Define the input data layers for the transformer model.
    """
    reader = layers.py_reader(
        capacity=20,
        name="test_reader" if is_test else "train_reader",
        shapes=[dense_input_descs[input_field][0] for input_field in input_fields],
        dtypes=[dense_input_descs[input_field][1] for input_field in input_fields],
        lod_levels=[
            dense_input_descs[input_field][2]
            if len(dense_input_descs[input_field]) == 3 else 0
            for input_field in input_fields
        ], use_double_buffer=True)
    return layers.read_file(reader), reader


def dense_transformer(src_vocab_size,
                trg_vocab_size,
                max_length,
                n_layer,
                enc_n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                prepostprocess_dropout,
                attention_dropout,
                relu_dropout,
                preprocess_cmd,
                postprocess_cmd,
                weight_sharing,
                embedding_sharing,
                label_smooth_eps,
                use_py_reader=False,
                is_test=False,
                params_type="normal",
                all_data_inputs=None):
    """
        transformer
    """
    if embedding_sharing:
        assert src_vocab_size == trg_vocab_size, (
            "Vocabularies in source and target should be same for weight sharing."
        )


    data_input_names = encoder_data_input_fields + \
                decoder_data_input_fields[:-1] + label_data_input_fields + dense_bias_input_fields

    if use_py_reader:
        all_inputs = all_data_inputs
    else:
        all_inputs = make_all_inputs(data_input_names)

    enc_inputs_len = len(encoder_data_input_fields)
    dec_inputs_len = len(decoder_data_input_fields[:-1])
    enc_inputs = all_inputs[0:enc_inputs_len]
    dec_inputs = all_inputs[enc_inputs_len:enc_inputs_len + dec_inputs_len]
    real_label = all_inputs[enc_inputs_len + dec_inputs_len]
    weights = all_inputs[enc_inputs_len + dec_inputs_len + 1]
    reverse_label = all_inputs[enc_inputs_len + dec_inputs_len + 2]
    enc_inputs[2] = all_inputs[-3] # dense_src_slf_attn_bias
    dec_inputs[3] = all_inputs[-2] # dense_trg_slf_attn_bias
    dec_inputs[4] = all_inputs[-1] # dense_trg_src_attn_bias

    enc_output = wrap_encoder(
        src_vocab_size,
        max_length,
        enc_n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
        weight_sharing,
        embedding_sharing,
        enc_inputs,
        params_type=params_type)

    predict = wrap_decoder(
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
        weight_sharing,
        embedding_sharing,
        dec_inputs,
        enc_output, is_train = True if not is_test else False,
        params_type=params_type)

    # Padding index do not contribute to the total loss. The weights is used to
    # cancel padding index in calculating the loss.
    if label_smooth_eps:
        label = layers.one_hot(input=real_label, depth=trg_vocab_size)
        label = label * (1 - label_smooth_eps) + (1 - label) * (
            label_smooth_eps / (trg_vocab_size - 1))
        label.stop_gradient = True
    else:
        label = real_label

    cost = layers.softmax_with_cross_entropy(
        logits=predict,
        label=label,
        soft_label=True if label_smooth_eps else False)
    weighted_cost = cost * weights
    sum_cost = layers.reduce_sum(weighted_cost)
    sum_cost.persistable = True
    token_num = layers.reduce_sum(weights)
    token_num.persistable = True
    token_num.stop_gradient = True
    avg_cost = sum_cost / token_num

    sen_count = layers.shape(dec_inputs[0])[0]
    batch_predict = layers.reshape(predict, shape = [sen_count, -1, DenseModelHyperParams.trg_vocab_size])
    batch_label = layers.reshape(real_label, shape=[sen_count, -1])
    batch_weights = layers.reshape(weights, shape=[sen_count, -1, 1])
    return sum_cost, avg_cost, token_num, batch_predict, cost, sum_cost, batch_label, batch_weights


def wrap_encoder(src_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 weight_sharing,
                 embedding_sharing,
                 enc_inputs=None,
                 params_type="normal"):
    """
    The wrapper assembles together all needed layers for the encoder.
    """
    if enc_inputs is None:
        # This is used to implement independent encoder program in inference.
        src_word, src_pos, src_slf_attn_bias = make_all_inputs(
            encoder_data_input_fields)
    else:
        src_word, src_pos, src_slf_attn_bias = enc_inputs
    enc_input = prepare_encoder(
        src_word,
        src_pos,
        src_vocab_size,
        d_model,
        max_length,
        prepostprocess_dropout,
        word_emb_param_name=dense_word_emb_param_names[0],
        params_type=params_type)
    enc_output = encoder(
        enc_input,
        src_slf_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd, )
    return enc_output


def wrap_decoder(trg_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 weight_sharing,
                 embedding_sharing,
                 dec_inputs=None,
                 enc_output=None,
                 caches=None, is_train=True, params_type="normal"):
    """
    The wrapper assembles together all needed layers for the decoder.
    """
    if dec_inputs is None:
        # This is used to implement independent decoder program in inference.
        trg_word, reverse_trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, enc_output = \
            make_all_inputs(dense_decoder_data_input_fields)
    else:
        trg_word, reverse_trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs

    dec_input = prepare_decoder(
        trg_word,
        trg_pos,
        trg_vocab_size,
        d_model,
        max_length,
        prepostprocess_dropout,
        word_emb_param_name=dense_word_emb_param_names[0]
        if embedding_sharing else dense_word_emb_param_names[1], 
        training=is_train,
        params_type=params_type)

    dec_output = decoder(
        dec_input,
        enc_output,
        trg_slf_attn_bias,
        trg_src_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
        caches=caches)
    # Reshape to 2D tensor to use GEMM instead of BatchedGEMM
    dec_output = layers.reshape(
        dec_output, shape=[-1, dec_output.shape[-1]], inplace=True)

    assert params_type == "fixed" or params_type == "normal" or params_type == "new"
    pre_name = "densedense"
    if params_type == "fixed":
        pre_name = "fixed_densefixed_dense"
    elif params_type == "new":
        pre_name = "new_densenew_dense"
    if weight_sharing and embedding_sharing:
        predict = layers.matmul(
            x=dec_output,
            y=fluid.default_main_program().global_block().var(
                pre_name + dense_word_emb_param_names[0]),
            transpose_y=True)
    elif weight_sharing:
        predict = layers.matmul(
            x=dec_output,
            y=fluid.default_main_program().global_block().var(
                pre_name +  dense_word_emb_param_names[1]),
            transpose_y=True)
    else:
        predict = layers.fc(input=dec_output,
                            size=trg_vocab_size,
                            bias_attr=False)
    #layers.Print(predict, message="logits", summarize=20)
    if dec_inputs is None:
        # Return probs for independent decoder program.
        predict = layers.softmax(predict)
    return predict

    
def get_enc_bias(source_inputs):
    """
        get_enc_bias
    """
    source_inputs = layers.cast(source_inputs, 'float32')
    emb_sum = layers.reduce_sum(layers.abs(source_inputs), dim=-1)
    zero = layers.fill_constant([1], 'float32', value=0) 
    bias = layers.cast(layers.equal(emb_sum, zero), 'float32') * -1e9
    return layers.unsqueeze(layers.unsqueeze(bias, axes=[1]), axes=[1])


def dense_fast_decode(
        src_vocab_size,
        trg_vocab_size,
        max_in_len,
        n_layer,
        enc_n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
        weight_sharing,
        embedding_sharing,
        beam_size,
        batch_size, 
        max_out_len,
        decode_alpha,
        eos_idx,
        params_type="normal"):
    """
    Use beam search to decode. Caches will be used to store states of history
    steps which can make the decoding faster.
    """

    assert params_type == "normal" or params_type == "new" or params_type == "fixed"
    data_input_names = dense_encoder_data_input_fields + fast_decoder_data_input_fields

    all_inputs = make_all_inputs(data_input_names)

    enc_inputs_len = len(encoder_data_input_fields)
    dec_inputs_len = len(fast_decoder_data_input_fields)
    enc_inputs = all_inputs[0:enc_inputs_len]
    dec_inputs = all_inputs[enc_inputs_len:enc_inputs_len + dec_inputs_len]

    enc_output = wrap_encoder(src_vocab_size, max_in_len, enc_n_layer, n_head,
                              d_key, d_value, d_model, d_inner_hid,
                              prepostprocess_dropout, attention_dropout,
                              relu_dropout, preprocess_cmd, postprocess_cmd,
                              weight_sharing, embedding_sharing, enc_inputs, params_type=params_type)
    enc_bias = get_enc_bias(enc_inputs[0])
    source_length, = dec_inputs

    def beam_search(enc_output, enc_bias, source_length):
        """
            beam_search
        """
        max_len = layers.fill_constant(
            shape=[1], dtype='int64', value=max_out_len)
        step_idx = layers.fill_constant(
            shape=[1], dtype='int64', value=0)
        cond = layers.less_than(x=step_idx, y=max_len)
        while_op = layers.While(cond)

        caches_batch_size = batch_size * beam_size
        init_score = np.zeros([1, beam_size]).astype('float32')
        init_score[:, 1:] = -INF
        initial_log_probs = layers.assign(init_score)

        alive_log_probs = layers.expand(initial_log_probs, [batch_size, 1])
        # alive seq [batch_size, beam_size, 1]
        initial_ids = layers.zeros([batch_size, 1, 1], 'float32')
        alive_seq = layers.expand(initial_ids, [1, beam_size, 1]) 
        alive_seq = layers.cast(alive_seq, 'int64')

        enc_output = layers.unsqueeze(enc_output, axes=[1])
        enc_output = layers.expand(enc_output, [1, beam_size, 1, 1])
        enc_output = layers.reshape(enc_output, [caches_batch_size, -1, d_model])

        tgt_src_attn_bias = layers.unsqueeze(enc_bias, axes=[1])
        tgt_src_attn_bias = layers.expand(tgt_src_attn_bias, [1, beam_size, n_head, 1, 1]) 
        enc_bias_shape = layers.shape(tgt_src_attn_bias)
        tgt_src_attn_bias = layers.reshape(tgt_src_attn_bias, [-1, enc_bias_shape[2], 
                enc_bias_shape[3], enc_bias_shape[4]])

        beam_search = BeamSearch(beam_size, batch_size, decode_alpha, trg_vocab_size, d_model)

        caches = [{
            "k": layers.fill_constant(
                shape=[caches_batch_size, 0, d_model],
                dtype=enc_output.dtype,
                value=0),
            "v": layers.fill_constant(
                shape=[caches_batch_size, 0, d_model],
                dtype=enc_output.dtype,
                value=0)
        } for i in range(n_layer)]

        finished_seq = layers.zeros_like(alive_seq)
        finished_scores = layers.fill_constant([batch_size, beam_size], 
                                                dtype='float32', value=-INF)
        finished_flags = layers.fill_constant([batch_size, beam_size], 
                                                dtype='float32', value=0)

        with while_op.block():
            pos = layers.fill_constant([caches_batch_size, 1, 1], dtype='int64', value=1)
            pos = layers.elementwise_mul(pos, step_idx, axis=0)

            alive_seq_1 = layers.reshape(alive_seq, [caches_batch_size, -1])
            alive_seq_2 = alive_seq_1[:, -1:] 
            alive_seq_2 = layers.unsqueeze(alive_seq_2, axes=[1])

            logits = wrap_decoder(
                trg_vocab_size, max_in_len, n_layer, n_head, d_key,
                d_value, d_model, d_inner_hid, prepostprocess_dropout,
                attention_dropout, relu_dropout, preprocess_cmd,
                postprocess_cmd, weight_sharing, embedding_sharing,
                dec_inputs=(alive_seq_2, alive_seq_2, pos, None, tgt_src_attn_bias),
                enc_output=enc_output, caches=caches, is_train=False, params_type=params_type)

            alive_seq_2, alive_log_probs_2, finished_seq_2, finished_scores_2, finished_flags_2, caches_2 = \
                    beam_search.inner_func(step_idx, logits, alive_seq_1, alive_log_probs, finished_seq, 
                                           finished_scores, finished_flags, caches, enc_output, 
                                           tgt_src_attn_bias)

            layers.increment(x=step_idx, value=1.0, in_place=True)
            finish_cond = beam_search.is_finished(step_idx, source_length, alive_log_probs_2, 
                                                  finished_scores_2, finished_flags_2) 

            layers.assign(alive_seq_2, alive_seq)
            layers.assign(alive_log_probs_2, alive_log_probs)
            layers.assign(finished_seq_2, finished_seq)
            layers.assign(finished_scores_2, finished_scores)
            layers.assign(finished_flags_2, finished_flags)

            for i in xrange(len(caches_2)):
                layers.assign(caches_2[i]["k"], caches[i]["k"])
                layers.assign(caches_2[i]["v"], caches[i]["v"])

            layers.logical_and(x=cond, y=finish_cond, out=cond)

        finished_flags = layers.reduce_sum(finished_flags, dim=1, keep_dim=True) / beam_size
        finished_flags = layers.cast(finished_flags, 'bool')
        mask = layers.cast(layers.reduce_any(input=finished_flags, dim=1, keep_dim=True), 'float32')
        mask = layers.expand(mask, [1, beam_size])

        mask2 = 1.0 - mask
        finished_seq = layers.cast(finished_seq, 'float32')
        alive_seq = layers.cast(alive_seq, 'float32')
        #print mask

        finished_seq = layers.elementwise_mul(finished_seq, mask, axis=0) + \
                        layers.elementwise_mul(alive_seq, mask2, axis = 0)
        finished_seq = layers.cast(finished_seq, 'int32')
        finished_scores = layers.elementwise_mul(finished_scores, mask, axis=0) + \
                            layers.elementwise_mul(alive_log_probs, mask2)
        finished_seq.persistable = True
        finished_scores.persistable = True

        return finished_seq, finished_scores

    finished_ids, finished_scores = beam_search(enc_output, enc_bias, source_length)
    return finished_ids, finished_scores