beam_search.py 9.2 KB
Newer Older
J
jiangbojian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers as layers

INF = 1. * 1e9

class BeamSearch(object):
    """
        beam_search class
    """
    def __init__(self, beam_size, batch_size, alpha, vocab_size, hidden_size):
        self.beam_size = beam_size
        self.batch_size = batch_size
        self.alpha = alpha
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.gather_top2k_append_index = layers.range(0, 2 * self.batch_size * beam_size, 1, 'int64') // \
                                                      (2 * self.beam_size) * (self.beam_size)

        self.gather_topk_append_index = layers.range(0, self.batch_size * beam_size, 1, 'int64') // \
                                                     self.beam_size * (2 * self.beam_size)

        self.gather_finish_topk_append_index = layers.range(0, self.batch_size * beam_size, 1, 'int64') // \
                                                            self.beam_size * (3 * self.beam_size)

        self.eos_id = layers.fill_constant([self.batch_size, 2 * self.beam_size], 'int64', value=1)
        self.get_alive_index = layers.range(0, self.batch_size, 1, 'int64') * self.beam_size

    
    def gather_cache(self, kv_caches, select_id):
        """
            gather cache
        """
        for index in xrange(len(kv_caches)):
            kv_cache = kv_caches[index]
            select_k = layers.gather(kv_cache['k'], [select_id])
            select_v = layers.gather(kv_cache['v'], [select_id])
            layers.assign(select_k, kv_caches[index]['k'])
            layers.assign(select_v, kv_caches[index]['v'])
    

    # topk_seq, topk_scores, topk_log_probs, topk_finished, cache
    def compute_topk_scores_and_seq(self, sequences, scores, scores_to_gather, flags, pick_finish=False, cache=None):
        """
            compute_topk_scores_and_seq
        """
        topk_scores, topk_indexes = layers.topk(scores, k=self.beam_size) #[batch_size, beam_size]
        if not pick_finish:
            flat_topk_indexes = layers.reshape(topk_indexes, [-1]) + self.gather_topk_append_index
            flat_sequences = layers.reshape(sequences, [2 * self.batch_size * self.beam_size, -1])
        else:
            flat_topk_indexes = layers.reshape(topk_indexes, [-1]) + self.gather_finish_topk_append_index
            flat_sequences = layers.reshape(sequences, [3 * self.batch_size * self.beam_size, -1])

        topk_seq = layers.gather(flat_sequences, [flat_topk_indexes])
        topk_seq = layers.reshape(topk_seq, [self.batch_size, self.beam_size, -1])

        flat_flags = layers.reshape(flags, [-1])
        topk_flags = layers.gather(flat_flags, [flat_topk_indexes])
        topk_flags = layers.reshape(topk_flags, [-1, self.beam_size])

        flat_scores = layers.reshape(scores_to_gather, [-1])
        topk_gathered_scores = layers.gather(flat_scores, [flat_topk_indexes]) 
        topk_gathered_scores = layers.reshape(topk_gathered_scores, [-1, self.beam_size])
        
        if cache:
            self.gather_cache(cache, flat_topk_indexes)

        return topk_seq, topk_gathered_scores, topk_flags, cache


    def grow_topk(self, i, logits, alive_seq, alive_log_probs, cache, enc_output, enc_bias):
        """
            grow_topk
        """
        logits = layers.reshape(logits, [self.batch_size, self.beam_size, -1])
        
        candidate_log_probs = layers.log(layers.softmax(logits, axis=2))
        log_probs = candidate_log_probs + layers.unsqueeze(alive_log_probs, axes=[2]) 
        
        base_1 = layers.cast(i, 'float32') + 6.0
        base_1 /= 6.0
        length_penalty = layers.pow(base_1, self.alpha)
        #length_penalty = layers.pow(((5.0 + layers.cast(i+1, 'float32')) / 6.0), self.alpha)
        
        curr_scores = log_probs / length_penalty
        flat_curr_scores = layers.reshape(curr_scores, [self.batch_size, self.beam_size * self.vocab_size])

        topk_scores, topk_ids = layers.topk(flat_curr_scores, k=self.beam_size * 2)
        
        topk_log_probs = topk_scores * length_penalty

        select_beam_index = topk_ids // self.vocab_size
        select_id = topk_ids % self.vocab_size

        #layers.Print(select_id, message="select_id", summarize=1024)
        #layers.Print(topk_scores, message="topk_scores", summarize=10000000)
        
        flat_select_beam_index = layers.reshape(select_beam_index, [-1]) + self.gather_top2k_append_index
        
        topk_seq = layers.gather(alive_seq, [flat_select_beam_index])
        topk_seq = layers.reshape(topk_seq, [self.batch_size, 2 * self.beam_size, -1])
        
        
        #concat with current ids
        topk_seq = layers.concat([topk_seq, layers.unsqueeze(select_id, axes=[2])], axis=2)
        topk_finished = layers.cast(layers.equal(select_id, self.eos_id), 'float32') 
        
        #gather cache
        self.gather_cache(cache, flat_select_beam_index)

        #topk_seq: [batch_size, 2*beam_size, i+1]
        #topk_log_probs, topk_scores, topk_finished: [batch_size, 2*beam_size]
        return topk_seq, topk_log_probs, topk_scores, topk_finished, cache


    def grow_alive(self, curr_seq, curr_scores, curr_log_probs, curr_finished, cache):
        """
            grow_alive
        """
        finish_float_flag = layers.cast(curr_finished, 'float32')
        finish_float_flag = finish_float_flag * -INF
        curr_scores += finish_float_flag

        return self.compute_topk_scores_and_seq(curr_seq, curr_scores, 
                                curr_log_probs, curr_finished, cache=cache)

    
    def grow_finished(self, i, finished_seq, finished_scores, finished_flags, curr_seq, 
                      curr_scores, curr_finished):
        """
            grow_finished
        """
        finished_seq = layers.concat([finished_seq, 
                                layers.fill_constant([self.batch_size, self.beam_size, 1], dtype='int64', value=0)], 
                                axis=2)

        curr_scores = curr_scores + (1.0 - layers.cast(curr_finished, 'int64')) * -INF

        curr_finished_seq = layers.concat([finished_seq, curr_seq], axis=1)
        curr_finished_scores = layers.concat([finished_scores, curr_scores], axis=1)
        curr_finished_flags = layers.concat([finished_flags, curr_finished], axis=1)
         
        return self.compute_topk_scores_and_seq(curr_finished_seq, curr_finished_scores, 
                                                curr_finished_scores, curr_finished_flags, 
                                                pick_finish=True)


    def inner_func(self, i, logits, alive_seq, alive_log_probs, finished_seq, finished_scores, 
                   finished_flags, cache, enc_output, enc_bias):
        """
            inner_func
        """
        topk_seq, topk_log_probs, topk_scores, topk_finished, cache = self.grow_topk(
                i, logits, alive_seq, alive_log_probs, cache, enc_output, enc_bias)

        alive_seq, alive_log_probs, _, cache = self.grow_alive(
                topk_seq, topk_scores, topk_log_probs, topk_finished, cache)
        #layers.Print(alive_seq, message="alive_seq", summarize=1024)

        finished_seq, finished_scores, finished_flags, _ = self.grow_finished(
                i, finished_seq, finished_scores, finished_flags, topk_seq, topk_scores, topk_finished)

        return alive_seq, alive_log_probs, finished_seq, finished_scores, finished_flags, cache


    def is_finished(self, step_idx, source_length, alive_log_probs, finished_scores, finished_in_finished):
        """
            is_finished
        """
        base_1 = layers.cast(source_length, 'float32') + 55.0
        base_1 /= 6.0
        max_length_penalty = layers.pow(base_1, self.alpha)

        flat_alive_log_probs = layers.reshape(alive_log_probs, [-1])
        lower_bound_alive_scores_1 = layers.gather(flat_alive_log_probs, [self.get_alive_index])
        
        lower_bound_alive_scores = lower_bound_alive_scores_1 / max_length_penalty
        
        lowest_score_of_finished_in_finish = layers.reduce_min(finished_scores * finished_in_finished, dim=1)

        finished_in_finished = layers.cast(finished_in_finished, 'bool')
        lowest_score_of_finished_in_finish += \
                        ((1.0 - layers.cast(layers.reduce_any(finished_in_finished, 1), 'float32')) * -INF)
        
        #print lowest_score_of_finished_in_finish
        bound_is_met = layers.reduce_all(layers.greater_than(lowest_score_of_finished_in_finish, 
                                                             lower_bound_alive_scores))

        decode_length = source_length + 50
        length_cond = layers.less_than(x=step_idx, y=decode_length)

        return layers.logical_and(x=layers.logical_not(bound_is_met), y=length_cond)