train.sh 1.1 KB
Newer Older
S
sserdoubleh 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#!/bin/bash
set -ux

SAVE_DIR=outputs/PersonaChat
VOCAB_PATH=model/Bert/vocab.txt
DATA_DIR=data/PersonaChat
INIT_CHECKPOINT=model/PLATO
DATA_TYPE=multi_knowledge
USE_VISUALDL=false

# CUDA environment settings.
export CUDA_VISIBLE_DEVICES=0

# Paddle environment settings.
export FLAGS_fraction_of_gpu_memory_to_use=0.1
export FLAGS_eager_delete_scope=True
export FLAGS_eager_delete_tensor_gb=0.0

python -u \
    ./preprocess.py \
    --vocab_path $VOCAB_PATH \
    --data_dir $DATA_DIR \
    --data_type $DATA_TYPE

if [[ "$USE_VISUALDL" = true ]]; then
    visualdl --logdir=$SAVE_DIR/summary --port=8083 --host=`hostname` &
    VISUALDL_PID=$!
fi

python -u \
    ./run.py \
    --do_train true \
    --vocab_path $VOCAB_PATH \
    --data_dir $DATA_DIR \
    --data_type $DATA_TYPE \
    --batch_size 4 \
    --valid_steps 2000 \
    --num_type_embeddings 3 \
    --use_discriminator true \
    --num_epoch 20 \
    --lr 1e-5 \
    --save_checkpoint false \
    --save_summary $USE_VISUALDL \
    --init_checkpoint $INIT_CHECKPOINT \
    --save_dir $SAVE_DIR

if [[ $USE_VISUALDL = true ]]; then
    kill $VISUALDL_PID
fi