tokenizer.py 23.6 KB
Newer Older
S
sserdoubleh 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Tokenizer class.
"""

from __future__ import absolute_import, division, print_function, unicode_literals

import collections
import json
import logging
import os
import regex as re
import sys
import unicodedata


def clean_string(string):
    replace_mp = {
        " - ": "-",
        " ' ": "'",
        " n't": "n't",
        " 'm": "'m",
        " do not": " don't",
        " 's": "'s",
        " 've": "'ve",
        " 're": "'re"
    }
    for k, v in replace_mp.items():
        string = string.replace(k, v)
    return string


class Tokenizer(object):

    def __init__(self, vocab_path, special_tokens=[], tokenizer_type="Bert"):
        self.tokenizer_type = tokenizer_type
        if tokenizer_type == "Bert":
            self.spec_convert_dict = {"[BOS]": "[unused0]", "[EOS]": "[unused1]"}
            self.spec_revert_dict = {v: k for k,
                                     v in self.spec_convert_dict.items()}
            special_tokens = [self.spec_convert_dict.get(tok, tok)
                              for tok in special_tokens]
            self.special_tokens = ("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")
            self.special_tokens += tuple(x for x in special_tokens if x not in self.special_tokens)

            self._tokenizer = BertTokenizer(vocab_path, never_split=self.special_tokens)
            for tok in self.special_tokens:
                assert tok in self._tokenizer.vocab, f"special token '{tok}' is not in the vocabulary"
            self.vocab_size = len(self._tokenizer.vocab)
        elif tokenizer_type == "GPT2":
            self.spec_convert_dict = {"[UNK]": "<unk>"}
            self.spec_revert_dict = {v: k for k,
                                     v in self.spec_convert_dict.items()}
            special_tokens = [tok for tok in special_tokens
                              if tok not in self.spec_convert_dict]
            vocab_file = os.path.join(vocab_path, "vocab.json")
            merges_file = os.path.join(vocab_path, "merges.txt")
            self._tokenizer = GPT2Tokenizer(vocab_file, merges_file, special_tokens=special_tokens)
            self.num_specials = len(special_tokens)
            self.vocab_size = len(self._tokenizer)
        else:
            raise ValueError

    def tokenize(self, text):
        return self._tokenizer.tokenize(text)

    def convert_tokens_to_ids(self, tokens):
        if self.tokenizer_type == "Bert":
            tokens = [self.spec_convert_dict.get(tok, tok) for tok in tokens]
            ids = self._tokenizer.convert_tokens_to_ids(tokens)
            return ids
        else:
            tokens = [self.spec_convert_dict.get(tok, tok) for tok in tokens]
            ids = self._tokenizer.convert_tokens_to_ids(tokens)
            ids = [(i + self.num_specials) % self.vocab_size for i in ids]
            return ids

    def convert_ids_to_tokens(self, ids):
        if self.tokenizer_type == "Bert":
            tokens = self._tokenizer.convert_ids_to_tokens(ids)
            tokens = [self.spec_revert_dict.get(tok, tok) for tok in tokens]
            return tokens
        else:
            ids = [(i - self.num_specials) % self.vocab_size for i in ids]
            tokens = self._tokenizer.convert_ids_to_tokens(ids)
            tokens = [self.spec_revert_dict.get(tok, tok) for tok in tokens]
            return tokens

    def decode(self, ids, ignore_tokens=[]):
        tokens = self.convert_ids_to_tokens(ids)
        if len(ignore_tokens) > 0:
            ignore_tokens = set(ignore_tokens)
            tokens = [tok for tok in tokens if tok not in ignore_tokens]
        if self.tokenizer_type == "Bert":
            string = " ".join(tokens).replace(" ##", "")
        else:
            string = "".join(tokens)
            string = bytearray([self._tokenizer.byte_decoder[c]
                                for c in string]).decode("utf-8")
        string = clean_string(string)
        return string

# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""


logger = logging.getLogger(__name__)


def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    index = 0
    with open(vocab_file, "r", encoding="utf-8") as reader:
        while True:
            token = reader.readline()
            if not token:
                break
            token = token.strip()
            vocab[token] = index
            index += 1
    return vocab


def whitespace_tokenize(text):
    """Runs basic whitespace cleaning and splitting on a piece of text."""
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


class BertTokenizer(object):
    """Runs end-to-end tokenization: punctuation splitting + wordpiece"""

    def __init__(self, vocab_file, do_lower_case=True, max_len=None, do_basic_tokenize=True,
                 never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
        """Constructs a BertTokenizer.

        Args:
          vocab_file: Path to a one-wordpiece-per-line vocabulary file
          do_lower_case: Whether to lower case the input
                         Only has an effect when do_wordpiece_only=False
          do_basic_tokenize: Whether to do basic tokenization before wordpiece.
          max_len: An artificial maximum length to truncate tokenized sequences to;
                         Effective maximum length is always the minimum of this
                         value (if specified) and the underlying BERT model's
                         sequence length.
          never_split: List of tokens which will never be split during tokenization.
                         Only has an effect when do_wordpiece_only=False
        """
        if not os.path.isfile(vocab_file):
            raise ValueError(
                "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
                "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
        self.vocab = load_vocab(vocab_file)
        self.ids_to_tokens = collections.OrderedDict(
            [(ids, tok) for tok, ids in self.vocab.items()])
        self.do_basic_tokenize = do_basic_tokenize
        if do_basic_tokenize:
          self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case,
                                                never_split=never_split)
        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
        self.max_len = max_len if max_len is not None else int(1e12)

    def tokenize(self, text):
        split_tokens = []
        if self.do_basic_tokenize:
            for token in self.basic_tokenizer.tokenize(text):
                for sub_token in self.wordpiece_tokenizer.tokenize(token):
                    split_tokens.append(sub_token)
        else:
            split_tokens = self.wordpiece_tokenizer.tokenize(text)
        return split_tokens

    def convert_tokens_to_ids(self, tokens):
        """Converts a sequence of tokens into ids using the vocab."""
        ids = []
        for token in tokens:
            ids.append(self.vocab[token])
        if len(ids) > self.max_len:
            logger.warning(
                "Token indices sequence length is longer than the specified maximum "
                " sequence length for this BERT model ({} > {}). Running this"
                " sequence through BERT will result in indexing errors".format(len(ids), self.max_len)
            )
        return ids

    def convert_ids_to_tokens(self, ids):
        """Converts a sequence of ids in wordpiece tokens using the vocab."""
        tokens = []
        for i in ids:
            tokens.append(self.ids_to_tokens[i])
        return tokens


class BasicTokenizer(object):
    """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""

    def __init__(self,
                 do_lower_case=True,
                 never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
        """Constructs a BasicTokenizer.

        Args:
          do_lower_case: Whether to lower case the input.
        """
        self.do_lower_case = do_lower_case
        self.never_split = never_split

    def tokenize(self, text):
        """Tokenizes a piece of text."""
        text = self._clean_text(text)
        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
        text = self._tokenize_chinese_chars(text)
        orig_tokens = whitespace_tokenize(text)
        split_tokens = []
        for token in orig_tokens:
            if self.do_lower_case and token not in self.never_split:
                token = token.lower()
                token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

    def _run_split_on_punc(self, text):
        """Splits punctuation on a piece of text."""
        if text in self.never_split:
            return [text]
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]

    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)

    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
                (cp >= 0x3400 and cp <= 0x4DBF) or  #
                (cp >= 0x20000 and cp <= 0x2A6DF) or  #
                (cp >= 0x2A700 and cp <= 0x2B73F) or  #
                (cp >= 0x2B740 and cp <= 0x2B81F) or  #
                (cp >= 0x2B820 and cp <= 0x2CEAF) or
                (cp >= 0xF900 and cp <= 0xFAFF) or  #
                (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
            return True

        return False

    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xfffd or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


class WordpieceTokenizer(object):
    """Runs WordPiece tokenization."""

    def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """Tokenizes a piece of text into its word pieces.

        This uses a greedy longest-match-first algorithm to perform tokenization
        using the given vocabulary.

        For example:
          input = "unaffable"
          output = ["un", "##aff", "##able"]

        Args:
          text: A single token or whitespace separated tokens. This should have
            already been passed through `BasicTokenizer`.

        Returns:
          A list of wordpiece tokens.
        """

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens


def _is_whitespace(char):
    """Checks whether `chars` is a whitespace character."""
    # \t, \n, and \r are technically contorl characters but we treat them
    # as whitespace since they are generally considered as such.
    if char == " " or char == "\t" or char == "\n" or char == "\r":
        return True
    cat = unicodedata.category(char)
    if cat == "Zs":
        return True
    return False


def _is_control(char):
    """Checks whether `chars` is a control character."""
    # These are technically control characters but we count them as whitespace
    # characters.
    if char == "\t" or char == "\n" or char == "\r":
        return False
    cat = unicodedata.category(char)
    if cat.startswith("C"):
        return True
    return False


def _is_punctuation(char):
    """Checks whether `chars` is a punctuation character."""
    cp = ord(char)
    # We treat all non-letter/number ASCII as punctuation.
    # Characters such as "^", "$", and "`" are not in the Unicode
    # Punctuation class but we treat them as punctuation anyways, for
    # consistency.
    if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
            (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
        return True
    cat = unicodedata.category(char)
    if cat.startswith("P"):
        return True
    return False

# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""


try:
    from functools import lru_cache
except ImportError:
    # Just a dummy decorator to get the checks to run on python2
    # because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now.
    def lru_cache():
        return lambda func: func


@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    _chr = unichr if sys.version_info[0] == 2 else chr
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n += 1
    cs = [_chr(n) for n in cs]
    return dict(zip(bs, cs))

def get_pairs(word):
    """Return set of symbol pairs in a word.

    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

class GPT2Tokenizer(object):
    """
    GPT-2 BPE tokenizer. Peculiarities:
        - Byte-level BPE
    """

    def __init__(self, vocab_file, merges_file, errors='replace', special_tokens=None, max_len=None):
        self.max_len = max_len if max_len is not None else int(1e12)
        self.encoder = json.load(open(vocab_file))
        self.decoder = {v:k for k,v in self.encoder.items()}
        self.errors = errors # how to handle errors in decoding
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
        bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
        bpe_merges = [tuple(merge.split()) for merge in bpe_data]
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

        # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
        self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")

        self.special_tokens = {}
        self.special_tokens_decoder = {}
        self.set_special_tokens(special_tokens)

    def __len__(self):
        return len(self.encoder) + len(self.special_tokens)

    def set_special_tokens(self, special_tokens):
        """ Add a list of additional tokens to the encoder.
            The additional tokens are indexed starting from the last index of the
            current vocabulary in the order of the `special_tokens` list.
        """
        if not special_tokens:
            self.special_tokens = {}
            self.special_tokens_decoder = {}
            return
        self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens))
        self.special_tokens_decoder = {v:k for k, v in self.special_tokens.items()}
        logger.info("Special tokens {}".format(self.special_tokens))

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word

    def tokenize(self, text):
        """ Tokenize a string. """
        bpe_tokens = []
        for token in re.findall(self.pat, text):
            token = ''.join(self.byte_encoder[ord(b)] for b in token if ord(b) in self.byte_encoder)
            if token == '':
                continue
            bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens

    def convert_tokens_to_ids(self, tokens):
        """ Converts a sequence of tokens into ids using the vocab. """
        ids = []
        if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.encoder.get(tokens, 0)
        for token in tokens:
            if token in self.special_tokens:
                ids.append(self.special_tokens[token])
            else:
                ids.append(self.encoder.get(token, 0))
        if len(ids) > self.max_len:
            logger.warning(
                "Token indices sequence length is longer than the specified maximum "
                " sequence length for this OpenAI GPT model ({} > {}). Running this"
                " sequence through the model will result in indexing errors".format(len(ids), self.max_len)
            )
        return ids

    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
        """Converts a sequence of ids in BPE tokens using the vocab."""
        tokens = []
        for i in ids:
            if i in self.special_tokens_decoder:
                if not skip_special_tokens:
                    tokens.append(self.special_tokens_decoder[i])
            else:
                tokens.append(self.decoder[i])
        return tokens

    def encode(self, text):
        return self.convert_tokens_to_ids(self.tokenize(text))

    def decode(self, tokens):
        text = ''.join([self.decoder[token] for token in tokens])
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
        return text