run_squad_twomemory.sh 2.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#!/bin/bash
# ==============================================================================
# Copyright 2019 Baidu.com, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

export LANG=en_US.UTF-8
export LC_ALL=en_US.UTF-8
export LC_CTYPE=en_US.UTF-8

if [ ! -d log ]; then
mkdir log
else
rm -r log/*
fi

if [ ! -d output ]; then
mkdir output
else
rm -r output/*
fi

export FLAGS_cudnn_deterministic=true
export FLAGS_cpu_deterministic=true

PWD_DIR=`pwd`
DATA=../data/
BERT_DIR=cased_L-24_H-1024_A-16
WN_CPT_EMBEDDING_PATH=../retrieve_concepts/KB_embeddings/wn_concept2vec.txt
NELL_CPT_EMBEDDING_PATH=../retrieve_concepts/KB_embeddings/nell_concept2vec.txt

python3 src/run_squad_twomemory.py \
  --batch_size 6 \
  --do_train true \
  --do_predict true \
  --do_lower_case false \
  --init_pretraining_params $BERT_DIR/params \
  --train_file $DATA/SQuAD/train-v1.1.json \
  --predict_file $DATA/SQuAD/dev-v1.1.json \
  --vocab_path $BERT_DIR/vocab.txt \
  --bert_config_path $BERT_DIR/bert_config.json \
  --freeze false \
  --save_steps 4000 \
  --weight_decay 0.01 \
  --warmup_proportion 0.1 \
  --learning_rate 3e-5 \
  --epoch 3 \
  --max_seq_len 384 \
  --doc_stride 128 \
  --wn_concept_embedding_path $WN_CPT_EMBEDDING_PATH \
  --nell_concept_embedding_path $NELL_CPT_EMBEDDING_PATH \
  --use_wordnet true \
  --use_nell true \
  --random_seed 45 \
  --checkpoints output/ 1>$PWD_DIR/log/train.log 2>&1