train.py 31.7 KB
Newer Older
L
Li Fuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
import argparse
import ast
import copy
import logging
import multiprocessing
import os
import six
import sys
import time

import numpy as np
import paddle.fluid as fluid

import reader
from config import *
from desc import *
from model import transformer, position_encoding_init


def parse_args():
    parser = argparse.ArgumentParser("Training for Transformer.")
    parser.add_argument(
        "--src_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of source language.")
    parser.add_argument(
        "--trg_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of target language.")
    parser.add_argument(
        "--phoneme_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of phonemes.")
    parser.add_argument(
        "--lexicon_fpath",
        type=str,
        required=True,
        help="The path of lexicon of source language.")
    parser.add_argument(
        "--train_file_pattern",
        type=str,
        required=True,
        help="The pattern to match training data files.")
    parser.add_argument(
        "--val_file_pattern",
        type=str,
        help="The pattern to match validation data files.")
    parser.add_argument(
        "--use_token_batch",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to "
        "produce batch data according to token number.")
    parser.add_argument(
        "--batch_size",
        type=int,
        default=4096,
        help="The number of sequences contained in a mini-batch, or the maximum "
        "number of tokens (include paddings) contained in a mini-batch. Note "
        "that this represents the number on single device and the actual batch "
        "size for multi-devices will multiply the device number.")
    parser.add_argument(
        "--pool_size",
        type=int,
        default=200000,
        help="The buffer size to pool data.")
    parser.add_argument(
        "--sort_type",
        default="pool",
        choices=("global", "pool", "none"),
        help="The grain to sort by length: global for all instances; pool for "
        "instances in pool; none for no sort.")
    parser.add_argument(
        "--shuffle",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to shuffle instances in each pass.")
    parser.add_argument(
        "--shuffle_batch",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to shuffle the data batches.")
    parser.add_argument(
        "--special_token",
        type=str,
        default=["<s>", "<e>", "<unk>"],
        nargs=3,
        help="The <bos>, <eos> and <unk> tokens in the dictionary.")
    parser.add_argument(
        "--token_delimiter",
        type=lambda x: str(x.encode().decode("unicode-escape")),
        default=" ",
        help="The delimiter used to split tokens in source or target sentences. "
        "For EN-DE BPE data we provided, use spaces as token delimiter. ")
    parser.add_argument(
        'opts',
        help='See config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
    parser.add_argument(
        '--local',
        type=ast.literal_eval,
        default=True,
        help='Whether to run as local mode.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help="The device type.")
    parser.add_argument(
        '--update_method',
        choices=("pserver", "nccl2"),
        default="pserver",
        help='Update method.')
    parser.add_argument(
        '--sync', type=ast.literal_eval, default=True, help="sync mode.")
    parser.add_argument(
        "--enable_ce",
        type=ast.literal_eval,
        default=False,
        help="The flag indicating whether to run the task "
        "for continuous evaluation.")
    parser.add_argument(
        "--use_py_reader",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to use py_reader.")
    parser.add_argument(
        "--fetch_steps",
        type=int,
        default=100,
        help="The frequency to fetch and print output.")

    args = parser.parse_args()
    # Append args related to dict
    src_dict = reader.DataReader.load_dict(args.src_vocab_fpath)
    trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath)
    phone_dict = reader.DataReader.load_dict(args.phoneme_vocab_fpath)
    dict_args = [
L
Li Fuchen 已提交
157 158
        "src_vocab_size", str(len(src_dict)), "trg_vocab_size",
        str(len(trg_dict)), "phone_vocab_size", str(len(phone_dict)), "bos_idx",
159 160 161 162 163 164 165 166 167 168 169 170
        str(src_dict[args.special_token[0]]), "eos_idx",
        str(src_dict[args.special_token[1]]), "unk_idx",
        str(src_dict[args.special_token[2]])
    ]
    merge_cfg_from_list(args.opts + dict_args,
                        [TrainTaskConfig, ModelHyperParams])

    return args


def append_nccl2_prepare(startup_prog, trainer_id, worker_endpoints,
                         current_endpoint):
L
Li Fuchen 已提交
171 172
    assert (trainer_id >= 0 and len(worker_endpoints) > 1 and
            current_endpoint in worker_endpoints)
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    eps = copy.deepcopy(worker_endpoints)
    eps.remove(current_endpoint)
    nccl_id_var = startup_prog.global_block().create_var(
        name="NCCLID", persistable=True, type=fluid.core.VarDesc.VarType.RAW)
    startup_prog.global_block().append_op(
        type="gen_nccl_id",
        inputs={},
        outputs={"NCCLID": nccl_id_var},
        attrs={
            "endpoint": current_endpoint,
            "endpoint_list": eps,
            "trainer_id": trainer_id
        })
    return nccl_id_var


def pad_phoneme_data(phoneme_seqs, pad_idx, max_seq_len):
    """
    Pad the instances to the max sequence length in batch, and generate the
    corresponding position data and attention bias.
    """
    ph_seq_lens = []
    for ps in phoneme_seqs:
        cur_seq_lens = [len(x) for x in ps]
        ph_seq_lens.append(max(cur_seq_lens))
    max_ph_seq_len = max(ph_seq_lens)

    batch_size = len(phoneme_seqs)
    phoneme_data = pad_idx * np.ones(
        (batch_size, max_seq_len, max_ph_seq_len), dtype=np.int64)
L
Li Fuchen 已提交
203 204
    phoneme_mask = np.zeros(
        (batch_size, max_seq_len, max_ph_seq_len), dtype=np.int64)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

    for i in range(batch_size):
        cur_ph_seq = phoneme_seqs[i]
        for j, cur_word_phs in enumerate(cur_ph_seq):
            word_phs_len = len(cur_word_phs)
            phoneme_data[i, j, :word_phs_len] = cur_word_phs
            phoneme_mask[i, j, :word_phs_len] = 1

    phoneme_data = np.reshape(phoneme_data, [batch_size, max_seq_len, -1, 1])

    return phoneme_data, phoneme_mask, max_ph_seq_len


def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
                   is_label=False,
                   return_attn_bias=True,
                   return_max_len=True,
                   return_num_token=False):
    """
    Pad the instances to the max sequence length in batch, and generate the
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
    if is_label:  # label weight
        inst_weight = np.array([[1.] * len(inst) + [0.] * (max_len - len(inst))
                                for inst in insts])
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
        inst_pos = np.array([
            list(range(0, len(inst))) + [0] * (max_len - len(inst))
            for inst in insts
        ])
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
L
Li Fuchen 已提交
251
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
252 253 254 255 256 257
            slf_attn_bias_data = np.triu(slf_attn_bias_data,
                                         1).reshape([-1, 1, max_len, max_len])
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
L
Li Fuchen 已提交
258 259 260
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
    if return_num_token:
        num_token = 0
        for inst in insts:
            num_token += len(inst)
        return_list += [num_token]
    return return_list if len(return_list) > 1 else return_list[0]


def prepare_batch_input(insts, data_input_names, src_pad_idx, phone_pad_idx,
                        trg_pad_idx, n_head, d_model):
    """
    Put all padded data needed by training into a dict.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    src_word = src_word.reshape(-1, src_max_len, 1)
    src_pos = src_pos.reshape(-1, src_max_len, 1)
    src_phone, src_phone_mask, max_phone_len = pad_phoneme_data(
        [inst[1] for inst in insts], phone_pad_idx, src_max_len)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
        [inst[2] for inst in insts], trg_pad_idx, n_head, is_target=True)
    trg_word = trg_word.reshape(-1, trg_max_len, 1)
    trg_pos = trg_pos.reshape(-1, trg_max_len, 1)

    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")

    lbl_word, lbl_weight, num_token = pad_batch_data(
        [inst[3] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
        return_max_len=False,
        return_num_token=True)

    data_input_dict = dict(
        zip(data_input_names, [
            src_word, src_pos, src_slf_attn_bias, src_phone, src_phone_mask,
            trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, lbl_word,
            lbl_weight
        ]))

    return data_input_dict, np.asarray([num_token], dtype="float32")


def prepare_data_generator(args,
                           is_test,
                           count,
                           pyreader,
                           py_reader_provider_wrapper,
                           place=None):
    """
    Data generator wrapper for DataReader. If use py_reader, set the data
    provider for py_reader
    """
    data_reader = reader.DataReader(
        phoneme_vocab_fpath=args.phoneme_vocab_fpath,
        lexicon_fpath=args.lexicon_fpath,
        fpattern=args.val_file_pattern if is_test else args.train_file_pattern,
        src_vocab_fpath=args.src_vocab_fpath,
        trg_vocab_fpath=args.trg_vocab_fpath,
        token_delimiter=args.token_delimiter,
        use_token_batch=args.use_token_batch,
        batch_size=args.batch_size * (1 if args.use_token_batch else count),
        pool_size=args.pool_size,
        sort_type=args.sort_type,
        shuffle=args.shuffle,
        shuffle_batch=args.shuffle_batch,
        start_mark=args.special_token[0],
        end_mark=args.special_token[1],
        unk_mark=args.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
        clip_last_batch=False).batch_generator

    def stack(data_reader, count, clip_last=True):
        def __impl__():
            res = []
            for item in data_reader():
                res.append(item)
                if len(res) == count:
                    yield res
                    res = []
            if len(res) == count:
                yield res
            elif not clip_last:
                data = []
                for item in res:
                    data += item
                if len(data) > count:
                    inst_num_per_part = len(data) // count
                    yield [
                        data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                        for i in range(count)
                    ]

        return __impl__

    def split(data_reader, count):
        def __impl__():
            for item in data_reader():
                inst_num_per_part = len(item) // count
                for i in range(count):
L
Li Fuchen 已提交
372 373
                    yield item[inst_num_per_part * i:inst_num_per_part * (i + 1
                                                                          )]
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

        return __impl__

    if not args.use_token_batch:
        # to make data on each device have similar token number
        data_reader = split(data_reader, count)
    if args.use_py_reader:
        pyreader.decorate_tensor_provider(
            py_reader_provider_wrapper(data_reader, place))
        data_reader = None
    else:  # Data generator for multi-devices
        data_reader = stack(data_reader, count)
    return data_reader


def prepare_feed_dict_list(data_generator, init_flag, count):
    """
    Prepare the list of feed dict for multi-devices.
    """
    feed_dict_list = []
    if data_generator is not None:  # use_py_reader == False
        data_input_names = encoder_data_input_fields + \
                    decoder_data_input_fields[:-1] + label_data_input_fields
        data = next(data_generator)
        for idx, data_buffer in enumerate(data):
            data_input_dict, num_token = prepare_batch_input(
                data_buffer, data_input_names, ModelHyperParams.eos_idx,
                ModelHyperParams.phone_pad_idx, ModelHyperParams.eos_idx,
                ModelHyperParams.n_head, ModelHyperParams.d_model)
            feed_dict_list.append(data_input_dict)
    if init_flag:
        for idx in range(count):
            pos_enc_tables = dict()
            for pos_enc_param_name in pos_enc_param_names:
                pos_enc_tables[pos_enc_param_name] = position_encoding_init(
                    ModelHyperParams.max_length + 1, ModelHyperParams.d_model)
            if len(feed_dict_list) <= idx:
                feed_dict_list.append(pos_enc_tables)
            else:
                feed_dict_list[idx] = dict(
L
Li Fuchen 已提交
414 415
                    list(pos_enc_tables.items()) + list(feed_dict_list[idx]
                                                        .items()))
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    return feed_dict_list if len(feed_dict_list) == count else None


def py_reader_provider_wrapper(data_reader, place):
    """
    Data provider needed by fluid.layers.py_reader.
    """

    def py_reader_provider():
        data_input_names = encoder_data_input_fields + \
                    decoder_data_input_fields[:-1] + label_data_input_fields
        for batch_id, data in enumerate(data_reader()):
            data_input_dict, num_token = prepare_batch_input(
                data, data_input_names, ModelHyperParams.eos_idx,
                ModelHyperParams.phone_pad_idx, ModelHyperParams.eos_idx,
                ModelHyperParams.n_head, ModelHyperParams.d_model)
            yield [data_input_dict[item] for item in data_input_names]

    return py_reader_provider


def test_context(exe, train_exe, dev_count):
    # Context to do validation.
    test_prog = fluid.Program()
    startup_prog = fluid.Program()
    if args.enable_ce:
        test_prog.random_seed = 1000
        startup_prog.random_seed = 1000
    with fluid.program_guard(test_prog, startup_prog):
        with fluid.unique_name.guard():
            sum_cost, avg_cost, predict, token_num, pyreader = transformer(
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
                use_py_reader=args.use_py_reader,
                beta=ModelHyperParams.beta,
                is_test=True)
    test_prog = test_prog.clone(for_test=True)
    test_data = prepare_data_generator(
        args,
        is_test=True,
        count=dev_count,
        pyreader=pyreader,
        py_reader_provider_wrapper=py_reader_provider_wrapper)

    exe.run(startup_prog)  # to init pyreader for testing
    if TrainTaskConfig.ckpt_path:
        fluid.io.load_persistables(
            exe, TrainTaskConfig.ckpt_path, main_program=test_prog)

    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.use_experimental_executor = True
    build_strategy = fluid.BuildStrategy()
    test_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        main_program=test_prog,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy,
        share_vars_from=train_exe)

    def test(exe=test_exe, pyreader=pyreader):
        test_total_cost = 0
        test_total_token = 0

        if args.use_py_reader:
            pyreader.start()
            data_generator = None
        else:
            data_generator = test_data()
        while True:
            try:
L
Li Fuchen 已提交
500 501 502 503
                feed_dict_list = prepare_feed_dict_list(data_generator, False,
                                                        dev_count)
                outs = test_exe.run(fetch_list=[sum_cost.name, token_num.name],
                                    feed=feed_dict_list)
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
            except (StopIteration, fluid.core.EOFException):
                # The current pass is over.
                if args.use_py_reader:
                    pyreader.reset()
                break
            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            test_total_cost += sum_cost_val.sum()
            test_total_token += token_num_val.sum()
        test_avg_cost = test_total_cost / test_total_token
        test_ppl = np.exp([min(test_avg_cost, 100)])
        return test_avg_cost, test_ppl

    return test


def train_loop(exe,
               train_prog,
               startup_prog,
               dev_count,
               sum_cost,
               avg_cost,
               token_num,
               predict,
               pyreader,
               nccl2_num_trainers=1,
               nccl2_trainer_id=0):
    # Initialize the parameters.
    if TrainTaskConfig.ckpt_path:
        exe.run(startup_prog)  # to init pyreader for training
        logging.info("load checkpoint from {}".format(
            TrainTaskConfig.ckpt_path))
        fluid.io.load_persistables(
            exe, TrainTaskConfig.ckpt_path, main_program=train_prog)
    else:
        logging.info("init fluid.framework.default_startup_program")
        exe.run(startup_prog)

    logging.info("begin reader")
    train_data = prepare_data_generator(
        args,
        is_test=False,
        count=dev_count,
        pyreader=pyreader,
        py_reader_provider_wrapper=py_reader_provider_wrapper)

    # For faster executor
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.use_experimental_executor = True
    exec_strategy.num_iteration_per_drop_scope = int(args.fetch_steps)
    build_strategy = fluid.BuildStrategy()
    # Since the token number differs among devices, customize gradient scale to
    # use token average cost among multi-devices. and the gradient scale is
    # `1 / token_number` for average cost.
    # build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized

    logging.info("begin executor")
    train_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        loss_name=avg_cost.name,
        main_program=train_prog,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy,
        num_trainers=nccl2_num_trainers,
        trainer_id=nccl2_trainer_id)

    if args.val_file_pattern is not None:
        test = test_context(exe, train_exe, dev_count)

    # the best cross-entropy value with label smoothing
    loss_normalizer = -((1. - TrainTaskConfig.label_smooth_eps) * np.log(
L
Li Fuchen 已提交
574 575 576 577
        (1. - TrainTaskConfig.label_smooth_eps
         )) + TrainTaskConfig.label_smooth_eps *
                        np.log(TrainTaskConfig.label_smooth_eps / (
                            ModelHyperParams.trg_vocab_size - 1) + 1e-20))
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

    step_idx = 0
    init_flag = True

    logging.info("begin train")
    for pass_id in six.moves.xrange(TrainTaskConfig.pass_num):
        pass_start_time = time.time()

        if args.use_py_reader:
            pyreader.start()
            data_generator = None
        else:
            data_generator = train_data()

        batch_id = 0
        while True:
            try:
L
Li Fuchen 已提交
595 596
                feed_dict_list = prepare_feed_dict_list(data_generator,
                                                        init_flag, dev_count)
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
                outs = train_exe.run(
                    fetch_list=[sum_cost.name, token_num.name]
                    if step_idx % args.fetch_steps == 0 else [],
                    feed=feed_dict_list)

                if step_idx % args.fetch_steps == 0:
                    sum_cost_val, token_num_val = np.array(outs[0]), np.array(
                        outs[1])
                    # sum the cost from multi-devices
                    total_sum_cost = sum_cost_val.sum()
                    total_token_num = token_num_val.sum()
                    total_avg_cost = total_sum_cost / total_token_num

                    if step_idx == 0:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer,
                             np.exp([min(total_avg_cost, 100)])))
                        avg_batch_time = time.time()
                    else:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
L
Li Fuchen 已提交
621 622 623 624 625
                            "normalized loss: %f, ppl: %f, speed: %.2f step/s" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer, np.exp(
                                 [min(total_avg_cost, 100)]),
                             args.fetch_steps / (time.time() - avg_batch_time)))
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
                        avg_batch_time = time.time()

                if step_idx % TrainTaskConfig.save_freq == 0 and step_idx > 0:
                    fluid.io.save_persistables(
                        exe,
                        os.path.join(TrainTaskConfig.ckpt_dir,
                                     "latest.checkpoint"), train_prog)
                    fluid.io.save_params(
                        exe,
                        os.path.join(TrainTaskConfig.model_dir,
                                     "iter_" + str(step_idx) + ".infer.model"),
                        train_prog)

                init_flag = False
                batch_id += 1
                step_idx += 1
            except (StopIteration, fluid.core.EOFException):
                # The current pass is over.
                if args.use_py_reader:
                    pyreader.reset()
                break

        time_consumed = time.time() - pass_start_time
        # Validate and save the persistable.
        if args.val_file_pattern is not None:
            val_avg_cost, val_ppl = test()
            logging.info(
                "epoch: %d, val avg loss: %f, val normalized loss: %f, val ppl: %f,"
L
Li Fuchen 已提交
654 655 656
                " consumed %fs" % (pass_id, val_avg_cost,
                                   val_avg_cost - loss_normalizer, val_ppl,
                                   time_consumed))
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
        else:
            logging.info("epoch: %d, consumed %fs" % (pass_id, time_consumed))
        if not args.enable_ce:
            fluid.io.save_persistables(
                exe,
                os.path.join(TrainTaskConfig.ckpt_dir,
                             "pass_" + str(pass_id) + ".checkpoint"),
                train_prog)

    if args.enable_ce:  # For CE
        print("kpis\ttrain_cost_card%d\t%f" % (dev_count, total_avg_cost))
        if args.val_file_pattern is not None:
            print("kpis\ttest_cost_card%d\t%f" % (dev_count, val_avg_cost))
        print("kpis\ttrain_duration_card%d\t%f" % (dev_count, time_consumed))


def train(args):
    # priority: ENV > args > config
    is_local = os.getenv("PADDLE_IS_LOCAL", "1")
    if is_local == '0':
        args.local = False
    logging.info(args)

    if args.device == 'CPU':
        TrainTaskConfig.use_gpu = False

    training_role = os.getenv("TRAINING_ROLE", "TRAINER")

    if training_role == "PSERVER" or (not TrainTaskConfig.use_gpu):
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    else:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()

    exe = fluid.Executor(place)

    train_prog = fluid.Program()
    startup_prog = fluid.Program()

    if args.enable_ce:
        train_prog.random_seed = 1000
        startup_prog.random_seed = 1000

    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            sum_cost, avg_cost, predict, token_num, pyreader = transformer(
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.phone_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
                ModelHyperParams.beta,
                ModelHyperParams.bos_idx,
                use_py_reader=args.use_py_reader,
                is_test=False)

            optimizer = None
            if args.sync:
                lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
                    ModelHyperParams.d_model, TrainTaskConfig.warmup_steps)
                logging.info("before adam")

                with fluid.default_main_program()._lr_schedule_guard():
                    learning_rate = lr_decay * TrainTaskConfig.learning_rate

                optimizer = fluid.optimizer.Adam(
                    learning_rate=learning_rate,
                    beta1=TrainTaskConfig.beta1,
                    beta2=TrainTaskConfig.beta2,
                    epsilon=TrainTaskConfig.eps)
            else:
                optimizer = fluid.optimizer.SGD(0.003)
            optimizer.minimize(avg_cost)

    if args.local:
        logging.info("local start_up:")
L
Li Fuchen 已提交
746 747
        train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
                   token_num, predict, pyreader)
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
    else:
        if args.update_method == "nccl2":
            trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
            port = os.getenv("PADDLE_PORT")
            worker_ips = os.getenv("PADDLE_TRAINERS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            trainers_num = len(worker_endpoints)
            current_endpoint = os.getenv("POD_IP") + ":" + port
            if trainer_id == 0:
                logging.info("train_id == 0, sleep 60s")
                time.sleep(60)
            logging.info("trainers_num:{}".format(trainers_num))
            logging.info("worker_endpoints:{}".format(worker_endpoints))
            logging.info("current_endpoint:{}".format(current_endpoint))
            append_nccl2_prepare(startup_prog, trainer_id, worker_endpoints,
                                 current_endpoint)
            train_loop(exe, train_prog, startup_prog, dev_count, sum_cost,
                       avg_cost, token_num, predict, pyreader, trainers_num,
                       trainer_id)
            return

        port = os.getenv("PADDLE_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("PADDLE_TRAINERS_NUM", "0"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))

        logging.info("pserver_endpoints:{}".format(pserver_endpoints))
        logging.info("current_endpoint:{}".format(current_endpoint))
        logging.info("trainer_id:{}".format(trainer_id))
        logging.info("pserver_ips:{}".format(pserver_ips))
        logging.info("port:{}".format(port))

        t = fluid.DistributeTranspiler()
        t.transpile(
            trainer_id,
            pservers=pserver_endpoints,
            trainers=trainers,
            program=train_prog,
            startup_program=startup_prog)

        if training_role == "PSERVER":
            logging.info("distributed: pserver started")
            current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
                "PADDLE_PORT")
            if not current_endpoint:
                logging.critical("need env SERVER_ENDPOINT")
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)

            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            logging.info("distributed: trainer started")
            trainer_prog = t.get_trainer_program()

            train_loop(exe, train_prog, startup_prog, dev_count, sum_cost,
                       avg_cost, token_num, predict, pyreader)
        else:
            logging.critical(
                "environment var TRAINER_ROLE should be TRAINER os PSERVER")
            exit(1)


if __name__ == "__main__":
    LOG_FORMAT = "[%(asctime)s %(levelname)s %(filename)s:%(lineno)d] %(message)s"
    logging.basicConfig(
        stream=sys.stdout, level=logging.DEBUG, format=LOG_FORMAT)
    logging.getLogger().setLevel(logging.INFO)

    args = parse_args()
    train(args)