run_train.sh 4.4 KB
Newer Older
W
wenquan wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
#!/bin/bash

# set gpu id to use
export CUDA_VISIBLE_DEVICES=0

# task_name can select from ["match", "match_kn", "match_kn_gene"]
# match task: do not use knowledge info (goal and knowledge) for retrieval model
# match_kn task: use knowledge info (goal and knowledge) for retrieval model
# match_kn_gene task: 1) use knowledge info (goal and knowledge) for retrieval model;
#                     2) generalizes target_a/target_b of goal, replaces them with slot mark
# more information about generalization in match_kn_gene,
# you can refer to ./tools/convert_conversation_corpus_to_model_text.py
TASK_NAME=$1

if [ "$TASK_NAME" = "match" ]
then
  DICT_NAME="./dict/char.dict"
  USE_KNOWLEDGE=0
  TOPIC_GENERALIZATION=0
elif [ "$TASK_NAME" = "match_kn" ]
then
  DICT_NAME="./dict/char.dict"
  USE_KNOWLEDGE=1
  TOPIC_GENERALIZATION=0
elif [ "$TASK_NAME" = "match_kn_gene" ]
then
  DICT_NAME="./dict/gene.dict"
  USE_KNOWLEDGE=1
  TOPIC_GENERALIZATION=1
else
  echo "task name error, should be match|match_kn|match_kn_gene"
fi

# in train stage, FOR_PREDICT=0
FOR_PREDICT=0

# put all data set that used and generated for training under this folder: INPUT_PATH
# for more details, please refer to the following data processing instructions
INPUT_PATH="./data"

# put the model file that saved in each stage under this folder: OUTPUT_PATH
OUTPUT_PATH="./models"

# set python path according to your actual environment
PYTHON_PATH="python"

# in train stage, use "train.txt" to train model, and use "dev.txt" to eval model
# the "train.txt" and "dev.txt" are the original data of DuConv and
# need to be placed in this folder: INPUT_PATH/resource/
# the following preprocessing will generate the actual data needed for model training
# DATA_TYPE = "train" or "dev"
DATA_TYPE=("train" "dev")

# candidate set
candidate_set_file=${INPUT_PATH}/candidate_set.txt

# data preprocessing
for ((i=0; i<${#DATA_TYPE[*]}; i++))
do
    # ensure that each file is in the correct path
    #     1. put the data of DuConv under this folder: INPUT_PATH/resource/
    #            - the data provided consists of three parts: train.txt dev.txt test.txt
    #            - the train.txt and dev.txt are session data, the test.txt is sample data
    #            - in train stage, we just use the train.txt and dev.txt
    #     2. the sample data extracted from session data is in this folder: INPUT_PATH/resource/
    #     3. the candidate data constructed from sample data is in this folder: INPUT_PATH/resource/
    #     4. the text file required by the model is in this folder: INPUT_PATH
    corpus_file=${INPUT_PATH}/resource/${DATA_TYPE[$i]}.txt
    sample_file=${INPUT_PATH}/resource/sample.${DATA_TYPE[$i]}.txt
    candidate_file=${INPUT_PATH}/resource/candidate.${DATA_TYPE[$i]}.txt
    text_file=${INPUT_PATH}/${DATA_TYPE[$i]}.txt

    # step 1: build candidate set from session data for negative training cases and predicting candidates
    if [ "${DATA_TYPE[$i]}"x = "train"x ]; then
        ${PYTHON_PATH} ./tools/build_candidate_set_from_corpus.py ${corpus_file} ${candidate_set_file}
    fi

    # step 2: firstly have to convert session data to sample data
    ${PYTHON_PATH} ./tools/convert_session_to_sample.py ${corpus_file} ${sample_file}

    # step 3: construct candidate for sample data
    ${PYTHON_PATH} ./tools/construct_candidate.py ${sample_file} ${candidate_set_file} ${candidate_file} 9

    # step 4: convert sample data with candidates to text data required by the model
    ${PYTHON_PATH} ./tools/convert_conversation_corpus_to_model_text.py ${candidate_file} ${text_file} ${USE_KNOWLEDGE} ${TOPIC_GENERALIZATION} ${FOR_PREDICT}

    # step 5: build dict from the training data, here we build character dict for model
    if [ "${DATA_TYPE[$i]}"x = "train"x ]; then
        ${PYTHON_PATH} ./tools/build_dict.py ${text_file} ${DICT_NAME}
    fi

done

# step 5: train model, you can find the model file in OUTPUT_PATH after training
$PYTHON_PATH -u train.py --task_name ${TASK_NAME} \
                   --use_cuda \
                   --batch_size 128 \
                   --data_dir ${INPUT_PATH} \
                   --vocab_path ${DICT_NAME} \
                   --checkpoints ${OUTPUT_PATH} \
                   --save_steps 1000 \
                   --weight_decay  0.01 \
                   --warmup_proportion 0.1 \
                   --validation_steps 1000000 \
                   --skip_steps 100 \
                   --learning_rate 0.1 \
                   --epoch 30 \
                   --max_seq_len 256