network.py 19.6 KB
Newer Older
W
wenquan wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
################################################################################
#
# Copyright (c) 2019 Baidu.com, Inc. All Rights Reserved
#
################################################################################
"""
File: network.py
"""

import argparse

import numpy as np

import paddle.fluid as fluid
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor

from source.utils.utils import str2bool
from source.utils.utils import id_to_text
from source.utils.utils import init_embedding
from source.utils.utils import build_data_feed
from source.utils.utils import load_id2str_dict
from source.inputters.corpus import KnowledgeCorpus
from source.models.knowledge_seq2seq import knowledge_seq2seq


def model_config():
    """ model config """
    parser = argparse.ArgumentParser()

    # Data
    data_arg = parser.add_argument_group("Data")
    data_arg.add_argument("--data_dir", type=str, default="./data/")
    data_arg.add_argument("--data_prefix", type=str, default="demo")
    data_arg.add_argument("--save_dir", type=str, default="./models/")
    data_arg.add_argument("--vocab_path", type=str, default="./data/vocab.txt")
    data_arg.add_argument("--embed_file", type=str,
                          default="./data/sgns.weibo.300d.txt")

    # Network
    net_arg = parser.add_argument_group("Network")
    net_arg.add_argument("--embed_size", type=int, default=300)
    net_arg.add_argument("--hidden_size", type=int, default=800)
    net_arg.add_argument("--bidirectional", type=str2bool, default=True)
    net_arg.add_argument("--vocab_size", type=int, default=30004)
    net_arg.add_argument("--min_len", type=int, default=1)
    net_arg.add_argument("--max_len", type=int, default=500)
    net_arg.add_argument("--num_layers", type=int, default=1)
    net_arg.add_argument("--attn", type=str, default='dot',
                         choices=['none', 'mlp', 'dot', 'general'])

    # Training / Testing
    train_arg = parser.add_argument_group("Training")

    train_arg.add_argument("--stage", type=int, default="0")
    train_arg.add_argument("--run_type", type=str, default="train")
    train_arg.add_argument("--init_model", type=str, default="")
    train_arg.add_argument("--init_opt_state", type=str, default="")

    train_arg.add_argument("--optimizer", type=str, default="Adam")
    train_arg.add_argument("--lr", type=float, default=0.0005)
    train_arg.add_argument("--grad_clip", type=float, default=5.0)
    train_arg.add_argument("--dropout", type=float, default=0.3)
    train_arg.add_argument("--num_epochs", type=int, default=13)
    train_arg.add_argument("--pretrain_epoch", type=int, default=5)
    train_arg.add_argument("--use_bow", type=str2bool, default=True)
    train_arg.add_argument("--use_posterior", type=str2bool, default=False)

    # Geneation
    gen_arg = parser.add_argument_group("Generation")
    gen_arg.add_argument("--beam_size", type=int, default=10)
    gen_arg.add_argument("--max_dec_len", type=int, default=30)
    gen_arg.add_argument("--length_average", type=str2bool, default=True)
    gen_arg.add_argument("--output", type=str, default="./output/test.result")
    gen_arg.add_argument("--model_path", type=str, default="./models/best_model/")
    gen_arg.add_argument("--unk_id", type=int, default=1)
    gen_arg.add_argument("--bos_id", type=int, default=2)
    gen_arg.add_argument("--eos_id", type=int, default=3)

    # MISC
    misc_arg = parser.add_argument_group("Misc")
    misc_arg.add_argument("--use_gpu", type=str2bool, default=True)
    misc_arg.add_argument("--log_steps", type=int, default=300)
    misc_arg.add_argument("--valid_steps", type=int, default=1000)
    misc_arg.add_argument("--batch_size", type=int, default=1)

    config = parser.parse_args()

    return config


def trace_fianl_result(final_score, final_ids, final_index, topk=1, EOS=3):
    """ trace fianl result """
    col_size = final_score.shape[1]
    row_size = final_score.shape[0]

    found_eos_num = 0
    i = row_size - 1

    beam_size = col_size
    score = final_score[-1]
    row_array = [row_size - 1] * beam_size
    col_array = [e for e in range(col_size)]

    while i >= 0:
        for j in range(col_size - 1, -1, -1):
            if final_ids[i, j] == EOS:
                repalce_idx = beam_size - (found_eos_num % beam_size) - 1
                score[repalce_idx] = final_score[i, j]
                found_eos_num += 1

                row_array[repalce_idx] = i
                col_array[repalce_idx] = j

        i -= 1

    topk_index = np.argsort(score,)[-topk:]

    trace_result = []
    trace_score = []

    for index in reversed(topk_index):
        start_i = row_array[index]
        start_j = col_array[index]
        ids = []
        for k in range(start_i, -1, -1):
            ids.append(final_ids[k, start_j])
            start_j = final_index[k, start_j]

        ids = ids[::-1]

        trace_result.append(ids)
        trace_score.append(score[index])

    return trace_result, trace_score


def load():
    """ load model for predict """
    config = model_config()
    config.vocab_size = len(open(config.vocab_path).readlines())
    final_score, final_ids, final_index = knowledge_seq2seq(config)

    final_score.persistable = True
    final_ids.persistable = True
    final_index.persistable = True

    main_program = fluid.default_main_program()

    if config.use_gpu:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    fluid.io.load_params(executor=exe, dirname=config.model_path, main_program=main_program)

    processors = KnowledgeCorpus(
        data_dir=config.data_dir,
        data_prefix=config.data_prefix,
        vocab_path=config.vocab_path,
        min_len=config.min_len,
        max_len=config.max_len)

    # load dict
    id_dict_array = load_id2str_dict(config.vocab_path)

    model_handle = [exe, place, final_score, final_ids, final_index, processors, id_dict_array]
    return model_handle


def predict(model_handle, text):
    """ predict for text by model_handle """
    batch_size = 1

    [exe, place, final_score, final_ids, final_index, processors, id_dict_array] = model_handle

    data_generator = processors.preprocessing_for_lines([text], batch_size=batch_size)

    results = []
    for batch_id, data in enumerate(data_generator()):
        data_feed, sent_num = build_data_feed(data, place, batch_size=batch_size)
        out = exe.run(feed=data_feed,
                      fetch_list=[final_score.name, final_ids.name, final_index.name])

        batch_score = out[0]
        batch_ids = out[1]
        batch_pre_index = out[2]

        batch_score_arr = np.split(batch_score, batch_size, axis=1)
        batch_ids_arr = np.split(batch_ids, batch_size, axis=1)
        batch_pre_index_arr = np.split(batch_pre_index, batch_size, axis=1)

        index = 0
        for (score, ids, pre_index) in zip(batch_score_arr, batch_ids_arr, batch_pre_index_arr):
            trace_ids, trace_score = trace_fianl_result(score, ids, pre_index, topk=1, EOS=3)
            results.append(id_to_text(trace_ids[0][:-1], id_dict_array))

            index += 1
            if index >= sent_num:
                break

    return results[0]


def init_model(config, param_name_list, place):
    """ init model """
    stage = config.stage
    if stage == 0:
        for name in param_name_list:
            t = fluid.global_scope().find_var(name).get_tensor()
            init_scale = 0.05
            np_t = np.asarray(t)
            if str(name) == 'embedding':
                np_para = init_embedding(config.embed_file, config.vocab_path,
                                         init_scale, np_t.shape)
            else:
                np_para = np.random.uniform(-init_scale, init_scale, np_t.shape).astype('float32')
            t.set(np_para.astype('float32'), place)
    else:
        model_init_file = config.init_model
        try:
            model_init = np.load(model_init_file)
        except:
            print("load init model failed", model_init_file)
            raise Exception("load init model failed")

        print("load init model")
        for name in param_name_list:
            t = fluid.global_scope().find_var(name).get_tensor()
            t.set(model_init[str(name)].astype('float32'), place)

        # load opt state
        opt_state_init_file = config.init_opt_state
        if opt_state_init_file != "":
            print("begin to load opt state")
            opt_state_data = np.load(opt_state_init_file)
            for k, v in opt_state_data.items():
                t = fluid.global_scope().find_var(str(k)).get_tensor()
                t.set(v, place)
            print("set opt state finished")

    print("init model parameters finshed")


def train_loop(config,
               train_generator, valid_generator,
               main_program, inference_program,
               model_handle, param_name_list, opt_var_name_list):
    """ model train loop """
    stage = config.stage
    [exe, place, bow_loss, kl_loss, nll_loss, final_loss] = model_handle

    total_step = 0
    start_epoch = 0 if stage == 0 else config.pretrain_epoch
    end_epoch = config.pretrain_epoch if stage == 0 else config.num_epochs
    print("start end", start_epoch, end_epoch)

    best_score = float('inf')
    for epoch_idx in range(start_epoch, end_epoch):
        total_bow_loss = 0
        total_kl_loss = 0
        total_nll_loss = 0
        total_final_loss = 0
        sample_num = 0

        for batch_id, data in enumerate(train_generator()):
            data_feed = build_data_feed(data, place,
                                        batch_size=config.batch_size,
                                        is_training=True,
                                        bow_max_len=config.max_len,
                                        pretrain_epoch=epoch_idx < config.pretrain_epoch)

            if data_feed is None:
                break

            out = exe.run(main_program, feed=data_feed,
                          fetch_list=[bow_loss.name, kl_loss.name, nll_loss.name, final_loss.name])

            total_step += 1
            total_bow_loss += out[0]
            total_kl_loss += out[1]
            total_nll_loss += out[2]
            total_final_loss += out[3]
            sample_num += 1

            if batch_id > 0 and batch_id % config.log_steps == 0:
                print("epoch %d step %d | " 
                      "bow loss %0.6f kl loss %0.6f nll loss %0.6f total loss %0.6f" % \
                      (epoch_idx, batch_id,
                       total_bow_loss / sample_num, total_kl_loss / sample_num, \
                       total_nll_loss / sample_num, total_final_loss / sample_num))

                total_bow_loss = 0
                total_kl_loss = 0
                total_nll_loss = 0
                total_final_loss = 0
                sample_num = 0

            if batch_id > 0 and batch_id % config.valid_steps == 0:
                eval_bow_loss, eval_kl_loss, eval_nll_loss, eval_total_loss = \
                    vaild_loop(config, valid_generator, inference_program, model_handle)
                # save model
                if stage != 0:
                    param_path = config.save_dir + "/" + str(total_step)
                    fluid.io.save_params(executor=exe, dirname=param_path,
                                         main_program=main_program)

                    if eval_nll_loss < best_score:
                        # save to best
                        best_model_path = config.save_dir + "/best_model"
                        print("save to best", eval_nll_loss, best_model_path)
                        fluid.io.save_params(executor=exe, dirname=best_model_path,
                                             main_program=main_program)
                        best_score = eval_nll_loss

        eval_bow_loss, eval_kl_loss, eval_nll_loss, eval_total_loss = \
            vaild_loop(config, valid_generator, inference_program, model_handle)

        if stage != 0:
            param_path = config.save_dir + "/" + str(total_step)
            fluid.io.save_params(executor=exe, dirname=param_path,
                                 main_program=main_program)
            if eval_nll_loss < best_score:
                best_model_path = config.save_dir + "/best_model"
                print("save to best", eval_nll_loss, best_model_path)
                fluid.io.save_params(executor=exe, dirname=best_model_path,
                                     main_program=main_program)
                best_score = eval_nll_loss

    if stage == 0:
        # save last model and opt_stat to npz for next stage init
        save_model_file = config.save_dir + "/model_stage_0"
        save_opt_state_file = config.save_dir + "/opt_state_stage_0"

        model_stage_0 = {}
        for name in param_name_list:
            t = np.asarray(fluid.global_scope().find_var(name).get_tensor())
            model_stage_0[name] = t
        np.savez(save_model_file, **model_stage_0)

        opt_state_stage_0 = {}
        for name in opt_var_name_list:
            t_data = np.asarray(fluid.global_scope().find_var(name).get_tensor())
            opt_state_stage_0[name] = t_data
        np.savez(save_opt_state_file, **opt_state_stage_0)


def vaild_loop(config, valid_generator, inference_program, model_handle):
    """ model vaild loop """
    [exe, place, bow_loss, kl_loss, nll_loss, final_loss] = model_handle
    valid_num = 0.0
    total_valid_bow_loss = 0.0
    total_valid_kl_loss = 0.0
    total_valid_nll_loss = 0.0
    total_valid_final_loss = 0.0
    for batch_id, data in enumerate(valid_generator()):
        data_feed = build_data_feed(data, place,
                                    batch_size=config.batch_size,
                                    is_training=True,
                                    bow_max_len=config.max_len,
                                    pretrain_epoch=False)

        if data_feed is None:
            continue

        val_fetch_outs = \
            exe.run(inference_program,
                    feed=data_feed,
                    fetch_list=[bow_loss.name, kl_loss.name, nll_loss.name, final_loss.name])

        total_valid_bow_loss += val_fetch_outs[0] * config.batch_size
        total_valid_kl_loss += val_fetch_outs[1] * config.batch_size
        total_valid_nll_loss += val_fetch_outs[2] * config.batch_size
        total_valid_final_loss += val_fetch_outs[3] * config.batch_size
        valid_num += config.batch_size

    print("valid dataset: bow loss %0.6f kl loss %0.6f nll loss %0.6f total loss %0.6f" % \
          (total_valid_bow_loss / valid_num, total_valid_kl_loss / valid_num, \
           total_valid_nll_loss / valid_num, total_valid_final_loss / valid_num))

    return [total_valid_bow_loss / valid_num, total_valid_kl_loss / valid_num, \
           total_valid_nll_loss / valid_num, total_valid_final_loss / valid_num]


def test(config):
    """ test """
    batch_size = config.batch_size
    config.vocab_size = len(open(config.vocab_path).readlines())
    final_score, final_ids, final_index = knowledge_seq2seq(config)

    final_score.persistable = True
    final_ids.persistable = True
    final_index.persistable = True

    main_program = fluid.default_main_program()

    if config.use_gpu:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    fluid.io.load_params(executor=exe, dirname=config.model_path,
                         main_program=main_program)
    print("laod params finsihed")

    # test data generator
    processors = KnowledgeCorpus(
        data_dir=config.data_dir,
        data_prefix=config.data_prefix,
        vocab_path=config.vocab_path,
        min_len=config.min_len,
        max_len=config.max_len)
    test_generator = processors.data_generator(
        batch_size=config.batch_size,
        phase="test",
        shuffle=False)

    # load dict
    id_dict_array = load_id2str_dict(config.vocab_path)

    out_file = config.output
    fout = open(out_file, 'w')
    for batch_id, data in enumerate(test_generator()):
        data_feed, sent_num = build_data_feed(data, place, batch_size=batch_size)

        if data_feed is None:
            break

        out = exe.run(feed=data_feed,
                      fetch_list=[final_score.name, final_ids.name, final_index.name])

        batch_score = out[0]
        batch_ids = out[1]
        batch_pre_index = out[2]

        batch_score_arr = np.split(batch_score, batch_size, axis=1)
        batch_ids_arr = np.split(batch_ids, batch_size, axis=1)
        batch_pre_index_arr = np.split(batch_pre_index, batch_size, axis=1)

        index = 0
        for (score, ids, pre_index) in zip(batch_score_arr, batch_ids_arr, batch_pre_index_arr):
            trace_ids, trace_score = trace_fianl_result(score, ids, pre_index, topk=1, EOS=3)
            fout.write(id_to_text(trace_ids[0][:-1], id_dict_array))
            fout.write('\n')

            index += 1
            if index >= sent_num:
                break

    fout.close()


def train(config):
    """ model training """
    config.vocab_size = len(open(config.vocab_path).readlines())
    bow_loss, kl_loss, nll_loss, final_loss= knowledge_seq2seq(config)

    bow_loss.persistable = True
    kl_loss.persistable = True
    nll_loss.persistable = True
    final_loss.persistable = True
    
    main_program = fluid.default_main_program()
    inference_program = fluid.default_main_program().clone(for_test=True)

    fluid.clip.set_gradient_clip(
        clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=config.grad_clip))
    optimizer = fluid.optimizer.Adam(learning_rate=config.lr)

    if config.stage == 0:
        print("stage 0")
        optimizer.minimize(bow_loss)
    else:
        print("stage 1")
        optimizer.minimize(final_loss)

    opt_var_name_list = optimizer.get_opti_var_name_list()

    if config.use_gpu:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    param_list = main_program.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    init_model(config, param_name_list, place)

    processors = KnowledgeCorpus(
                        data_dir=config.data_dir,
                        data_prefix=config.data_prefix,
                        vocab_path=config.vocab_path,
                        min_len=config.min_len,
                        max_len=config.max_len)
    train_generator = processors.data_generator(
                        batch_size=config.batch_size,
                        phase="train",
                        shuffle=True)
    valid_generator = processors.data_generator(
                        batch_size=config.batch_size,
                        phase="dev",
                        shuffle=False)

    model_handle = [exe, place, bow_loss, kl_loss, nll_loss, final_loss]

    train_loop(config,
               train_generator, valid_generator,
               main_program, inference_program,
               model_handle, param_name_list, opt_var_name_list)


if __name__ == "__main__":
    config = model_config()
    run_type = config.run_type
    
    if run_type == "train":
        train(config)
    elif run_type == "test":
        test(config)