run.py 24.8 KB
Newer Older
K
kgresearch 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Train and test the CoKE model on knowledge graph completion and path query datasets
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import collections
import multiprocessing
import os
import time
import logging
import json
import random

import numpy as np
import paddle
import paddle.fluid as fluid

from reader.coke_reader import KBCDataReader
from reader.coke_reader import PathqueryDataReader
from model.coke import CoKEModel
from optimization import optimization
#from evaluation import kbc_evaluation
from evaluation import kbc_batch_evaluation
from evaluation import compute_kbc_metrics
from evaluation import pathquery_batch_evaluation
from evaluation import compute_pathquery_metrics
from utils.args import ArgumentGroup, print_arguments
from utils.init import init_pretraining_params, init_checkpoint

logging.basicConfig(
    format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
    datefmt='%m/%d/%Y %H:%M:%S',
    level=logging.INFO)
logging.getLogger().setLevel(logging.INFO)
logger = logging.getLogger(__name__)

# yapf: disable
parser = argparse.ArgumentParser()
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("hidden_size",              int, 256,            "CoKE model config: hidden size, default 256")
model_g.add_arg("num_hidden_layers",        int, 6,              "CoKE model config: num_hidden_layers, default 6")
model_g.add_arg("num_attention_heads",      int, 4,              "CoKE model config: num_attention_heads, default 4")
model_g.add_arg("vocab_size",               int, -1,           "CoKE model config: vocab_size")
model_g.add_arg("num_relations",         int, None,           "CoKE model config: vocab_size")
model_g.add_arg("max_position_embeddings",  int, 10,             "CoKE model config: max_position_embeddings")
model_g.add_arg("hidden_act",               str, "gelu",         "CoKE model config: hidden_ac, default gelu")
model_g.add_arg("hidden_dropout_prob",      float, 0.1,          "CoKE model config: attention_probs_dropout_prob, default 0.1")
model_g.add_arg("attention_probs_dropout_prob", float, 0.1,      "CoKE model config: attention_probs_dropout_prob, default 0.1")
model_g.add_arg("initializer_range",        int, 0.02,           "CoKE model config: initializer_range")
model_g.add_arg("intermediate_size",        int, 512,            "CoKE model config: intermediate_size, default 512")

model_g.add_arg("init_checkpoint",          str,  None,          "Init checkpoint to resume training from, or for prediction only")
model_g.add_arg("init_pretraining_params",  str,  None,          "Init pre-training params which preforms fine-tuning from. If the "
                 "arg 'init_checkpoint' has been set, this argument wouldn't be valid.")
model_g.add_arg("checkpoints",              str,  "checkpoints", "Path to save checkpoints.")
model_g.add_arg("weight_sharing",           bool, True,          "If set, share weights between word embedding and masked lm.")

train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch",             int,    100,                "Number of epoches for training.")
train_g.add_arg("learning_rate",     float,  5e-5,               "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler",     str, "linear_warmup_decay",  "scheduler of learning rate.",
                choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("soft_label",               float, 0.9,          "Value of soft labels for loss computation")
train_g.add_arg("weight_decay",      float,  0.01,               "Weight decay rate for L2 regularizer.")
train_g.add_arg("warmup_proportion", float,  0.1,                "Proportion of training steps to perform linear learning rate warmup for.")
train_g.add_arg("use_ema",           bool,   True,               "Whether to use ema.")
train_g.add_arg("ema_decay",         float,  0.9999,             "Decay rate for expoential moving average.")
train_g.add_arg("use_fp16",          bool,   False,              "Whether to use fp16 mixed precision training.")
train_g.add_arg("loss_scaling",      float,  1.0,                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")

log_g = ArgumentGroup(parser, "logging", "logging related.")
log_g.add_arg("skip_steps",          int,    1000,               "The steps interval to print loss.")
log_g.add_arg("verbose",             bool,   False,              "Whether to output verbose log.")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("dataset",                   str,   "",    "dataset name")
data_g.add_arg("train_file",                str,   None,  "Data for training.")
data_g.add_arg("sen_candli_file",           str,   None,  "sentence_candicate_list file for path query evaluation. Only used for path query datasets")
data_g.add_arg("sen_trivial_file",           str,   None,  "trivial sentence file for pathquery evaluation. Only used for path query datasets")
data_g.add_arg("predict_file",              str,   None,  "Data for predictions.")
data_g.add_arg("vocab_path",                str,   None,  "Path to vocabulary.")
data_g.add_arg("true_triple_path",          str,   None,  "Path to all true triples. Only used for KBC evaluation.")
data_g.add_arg("max_seq_len",               int,   3,     "Number of tokens of the longest sequence.")
data_g.add_arg("batch_size",                int,   12,    "Total examples' number in batch for training. see also --in_tokens.")
data_g.add_arg("in_tokens",                 bool,  False,
               "If set, the batch size will be the maximum number of tokens in one batch. "
               "Otherwise, it will be the maximum number of examples in one batch.")

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("do_train",                     bool,   False,  "Whether to perform training.")
run_type_g.add_arg("do_predict",                   bool,   False,  "Whether to perform prediction.")
run_type_g.add_arg("use_cuda",                     bool,   True,   "If set, use GPU for training, default is True.")
run_type_g.add_arg("use_fast_executor",            bool,   False,  "If set, use fast parallel executor (in experiment).")
run_type_g.add_arg("num_iteration_per_drop_scope", int,    1,      "Ihe iteration intervals to clean up temporary variables.")

args = parser.parse_args()
# yapf: enable.


def create_model(pyreader_name, coke_config):
    pyreader = fluid.layers.py_reader\
            (
        capacity=50,
        shapes=[[-1, args.max_seq_len, 1],
                [-1, args.max_seq_len, 1],
                [-1, args.max_seq_len, 1], [-1, 1], [-1, 1]],
        dtypes=[
            'int64', 'int64', 'float32', 'int64', 'int64'],
        lod_levels=[0, 0, 0, 0, 0],
        name=pyreader_name,
        use_double_buffer=True)
    (src_ids, pos_ids, input_mask, mask_labels, mask_positions) = fluid.layers.read_file(pyreader)

    coke = CoKEModel(
        src_ids=src_ids,
        position_ids=pos_ids,
        input_mask=input_mask,
        config=coke_config,
        soft_label=args.soft_label,
        weight_sharing=args.weight_sharing,
        use_fp16=args.use_fp16)

    loss, fc_out = coke.get_pretraining_output(mask_label=mask_labels, mask_pos=mask_positions)
    if args.use_fp16 and args.loss_scaling > 1.0:
        loss = loss * args.loss_scaling

    batch_ones = fluid.layers.fill_constant_batch_size_like(
        input=mask_labels, dtype='int64', shape=[1], value=1)
    num_seqs = fluid.layers.reduce_sum(input=batch_ones)

    return pyreader, loss, fc_out, num_seqs


def pathquery_predict(test_exe, test_program, test_pyreader, fetch_list, all_examples,
                      sen_negli_dict, trivial_sen_set, eval_result_file):
    eval_i = 0
    step = 0
    batch_mqs = []
    batch_ranks = []
    test_pyreader.start()
    while True:
        try:
            np_fc_out = test_exe.run(fetch_list=fetch_list, program=test_program)[0]
            mqs, ranks = pathquery_batch_evaluation(eval_i, all_examples, np_fc_out,
                                                    sen_negli_dict, trivial_sen_set)
            batch_mqs.extend(mqs)
            batch_ranks.extend(ranks)
            step += 1
            if step % 10 == 0:
                logger.info("Processing pathquery_predict step:%d example: %d" % (step, eval_i))
            _batch_len = np_fc_out.shape[0]
            eval_i += _batch_len
        except fluid.core.EOFException:
            test_pyreader.reset()
            break

    eval_result = compute_pathquery_metrics(batch_mqs, batch_ranks, eval_result_file)
    return eval_result


def kbc_predict(test_exe, test_program, test_pyreader, fetch_list, all_examples, true_triplets_dict, eval_result_file):
    eval_i = 0
    step = 0
    batch_eval_rets = []
    f_batch_eval_rets = []
    test_pyreader.start()
    while True:
        try:
            batch_results = []
            np_fc_out = test_exe.run(fetch_list=fetch_list, program=test_program)[0]
            _batch_len = np_fc_out.shape[0]
            for idx in range(np_fc_out.shape[0]):
                logits = [float(x) for x in np_fc_out[idx].flat]
                batch_results.append(logits)
            rank, frank = kbc_batch_evaluation(eval_i, all_examples, batch_results, true_triplets_dict)
            batch_eval_rets.extend(rank)
            f_batch_eval_rets.extend(frank)
            if step % 10 == 0:
                logger.info("Processing kbc_predict step: %d exmaples:%d" % (step, eval_i))
            step += 1
            eval_i += _batch_len
        except fluid.core.EOFException:
            test_pyreader.reset()
            break
    eval_result = compute_kbc_metrics(batch_eval_rets, f_batch_eval_rets, eval_result_file)
    return eval_result


def predict(test_exe, test_program, test_pyreader, fetch_list, all_examples, args):
    dataset = args.dataset
    if not os.path.exists(args.checkpoints):
        os.makedirs(args.checkpoints)
    eval_result_file = os.path.join(args.checkpoints, "eval_result.json")
    logger.info(">> Evaluation result file: %s" % eval_result_file)

    if dataset.lower() in ["pathquerywn", "pathqueryfb"]:
        sen_candli_dict, trivial_sen_set = _load_pathquery_eval_dict(args.sen_candli_file,
                                                                   args.sen_trivial_file)
        logger.debug(">> Load sen_candli_dict size: %d" % len(sen_candli_dict))
        logger.debug(">> Trivial sen set size: %d" % len(trivial_sen_set))
        logger.debug(">> Finish load sen_candli set at:{}".format(time.ctime()))
        eval_performance = pathquery_predict(test_exe, test_program, test_pyreader, fetch_list,
                                              all_examples, sen_candli_dict, trivial_sen_set,
                                              eval_result_file)

        outs = "%s\t%.3f\t%.3f" % (args.dataset, eval_performance['mq'], eval_performance['fhits10'])
        logger.info("\n---------- Evaluation Performance --------------\n%s\n%s" %
                    ("\t".join(["TASK", "MQ", "Hits@10"]), outs))
    else:
        true_triplets_dict = _load_kbc_eval_dict(args.true_triple_path)
        logger.info(">> Finish loading true triplets dict %s" % time.ctime())
        eval_performance = kbc_predict(test_exe, test_program, test_pyreader, fetch_list,
                                        all_examples, true_triplets_dict, eval_result_file)
        outs = "%s\t%.3f\t%.3f\t%.3f\t%.3f" % (args.dataset,
                                               eval_performance['fmrr'],
                                               eval_performance['fhits1'],
                                               eval_performance['fhits3'],
                                               eval_performance['fhits10'])
        logger.info("\n----------- Evaluation Performance --------------\n%s\n%s" %
                    ("\t".join(["TASK", "MRR", "Hits@1", "Hits@3", "Hits@10"]), outs))
    return eval_performance


def _load_kbc_eval_dict(true_triple_file):
    def load_true_triples(true_triple_file):
        true_triples = []
        with open(true_triple_file, "r") as fr:
            for line in fr.readlines():
                tokens = line.strip("\r \n").split("\t")
                assert len(tokens) == 3
                true_triples.append(
                    (int(tokens[0]), int(tokens[1]), int(tokens[2])))
        logger.debug("Finish loading %d true triples" % len(true_triples))
        return true_triples
    true_triples = load_true_triples(true_triple_file)
    true_triples_dict = collections.defaultdict(lambda: {'hs': collections.defaultdict(list),
                                          'ts': collections.defaultdict(list)})
    for h, r, t in true_triples:
        true_triples_dict[r]['ts'][h].append(t)
        true_triples_dict[r]['hs'][t].append(h)
    return true_triples_dict


def _load_pathquery_eval_dict(sen_candli_file, trivial_sen_file, add_gold_o = True):
    sen_candli_dict = dict()
    for line in open(sen_candli_file):
        line = line.strip()
        segs = line.split("\t")
        assert len(segs) == 2, " Illegal format for sen_candli_dict, expects 2 columns data"
        sen = segs[0]
        candset = set(segs[1].split(" "))
        if add_gold_o is True:
            gold_o = sen.split(" ")[-1]
            candset.add(gold_o)
        _li = list(candset)
        int_li = [int(x) for x in _li]
        sen_candli_dict[sen] = int_li
    trivial_senset = {x.strip() for x in open(trivial_sen_file)}

    return sen_candli_dict, trivial_senset


def init_coke_net_config(args, print_config = True):
    config = dict()
    config["hidden_size"] = args.hidden_size
    config["num_hidden_layers"] = args.num_hidden_layers
    config["num_attention_heads"] = args.num_attention_heads
    config["vocab_size"] = args.vocab_size
    config["num_relations"] = args.num_relations
    config["max_position_embeddings"] = args.max_position_embeddings
    config["hidden_act"] = args.hidden_act
    config["hidden_dropout_prob"] = args.hidden_dropout_prob
    config["attention_probs_dropout_prob"] = args.attention_probs_dropout_prob
    config["initializer_range"] = args.initializer_range
    config["intermediate_size"] = args.intermediate_size

    if print_config is True:
        logger.info('----------- CoKE Network Configuration -------------')
        for arg, value in config.items():
            logger.info('%s: %s' % (arg, value))
        logger.info('------------------------------------------------')
    return config


def main(args):
    if not (args.do_train or args.do_predict):
        raise ValueError("For args `do_train` and `do_predict`, at "
                         "least one of them must be True.")
    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

    startup_prog = fluid.Program()

    # Init programs
    coke_config = init_coke_net_config(args, print_config=True)
    if args.do_train:
        train_data_reader = get_data_reader(args, args.train_file, is_training=True,
                                            epoch=args.epoch, shuffle=True, dev_count=dev_count,
                                            vocab_size=args.vocab_size)

        num_train_examples = train_data_reader.total_instance
        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                    args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size) // dev_count
        warmup_steps = int(max_train_steps * args.warmup_proportion)
        logger.info("Device count: %d" % dev_count)
        logger.info("Num train examples: %d" % num_train_examples)
        logger.info("Max train steps: %d" % max_train_steps)
        logger.info("Num warmup steps: %d" % warmup_steps)

        train_program = fluid.Program()

        # Create model and set optimization for train
        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, loss, _, num_seqs = create_model(
                    pyreader_name='train_reader',
                    coke_config=coke_config)

                scheduled_lr = optimization(
                    loss=loss,
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
                    loss_scaling=args.loss_scaling)

                if args.use_ema:
                    ema = fluid.optimizer.ExponentialMovingAverage(args.ema_decay)
                    ema.update()

                fluid.memory_optimize(train_program, skip_opt_set=[loss.name, num_seqs.name])

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
            logger.info("Theoretical memory usage in training:  %.3f - %.3f %s" %
                        (lower_mem, upper_mem, unit))

    if args.do_predict:
        # Create model for prediction
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, _, fc_out, num_seqs = create_model(
                    pyreader_name='test_reader',
                    coke_config=coke_config)

                if args.use_ema and 'ema' not in dir():
                    ema = fluid.optimizer.ExponentialMovingAverage(args.ema_decay)

                fluid.memory_optimize(test_prog, skip_opt_set=[fc_out.name, num_seqs.name])

        test_prog = test_prog.clone(for_test=True)

    exe.run(startup_prog)

    # Init checkpoints
    if args.do_train:
        init_train_checkpoint(args, exe, startup_prog)
    elif args.do_predict:
        init_predict_checkpoint(args, exe, startup_prog)

    # Run training
    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.use_experimental_executor = args.use_fast_executor
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

        train_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=loss.name,
            exec_strategy=exec_strategy,
            main_program=train_program)

        train_pyreader.decorate_tensor_provider(train_data_reader.data_generator())

        train_pyreader.start()
        steps = 0
        total_cost, total_num_seqs = [], []
        time_begin = time.time()
        while steps < max_train_steps:
            try:
                steps += 1
                if steps % args.skip_steps == 0:
                    if warmup_steps <= 0:
                        fetch_list = [loss.name, num_seqs.name]
                    else:
                        fetch_list = [
                            loss.name, scheduled_lr.name, num_seqs.name
                        ]
                else:
                    fetch_list = []

                outputs = train_exe.run(fetch_list=fetch_list)

                if steps % args.skip_steps == 0:
                    if warmup_steps <= 0:
                        np_loss, np_num_seqs = outputs
                    else:
                        np_loss, np_lr, np_num_seqs = outputs
                    total_cost.extend(np_loss * np_num_seqs)
                    total_num_seqs.extend(np_num_seqs)

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        verbose += "learning rate: %f" % (
                            np_lr[0]
                            if warmup_steps > 0 else args.learning_rate)
                        logger.info(verbose)

                    time_end = time.time()
                    used_time = time_end - time_begin
                    current_example, epoch = train_data_reader.get_progress()

                    logger.info("epoch: %d, progress: %d/%d, step: %d, loss: %f, "
                                "speed: %f steps/s" %
                                (epoch, current_example, num_train_examples, steps,
                                 np.sum(total_cost) / np.sum(total_num_seqs),
                                 args.skip_steps / used_time))
                    total_cost, total_num_seqs = [], []
                    time_begin = time.time()

                if steps == max_train_steps:
                    save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)
            except fluid.core.EOFException:
                logger.warning(">> EOFException")
                save_path = os.path.join(args.checkpoints, "step_" + str(steps) + "_final")
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break
        logger.info(">>Finish training at %s " % time.ctime())

    # Run prediction
    if args.do_predict:
        assert dev_count == 1, "During prediction, dev_count expects 1, current is %d" % dev_count
        test_data_reader = get_data_reader(args, args.predict_file, is_training=False,
                                           epoch=1, shuffle=False, dev_count=dev_count,
                                           vocab_size=args.vocab_size)
        test_pyreader.decorate_tensor_provider(test_data_reader.data_generator())

        if args.use_ema:
            with ema.apply(exe):
                eval_performance = predict(exe, test_prog, test_pyreader,
                                           [fc_out.name], test_data_reader.examples, args)
        else:
            eval_performance = predict(exe, test_prog, test_pyreader,
                                       [fc_out.name], test_data_reader.examples, args)

        logger.info(">>Finish predicting at %s " % time.ctime())


def init_predict_checkpoint(args, exe, startup_prog):
    if args.dataset in ["pathQueryWN", "pathQueryFB"]:
        assert args.sen_candli_file is not None and args.sen_trivial_file is not None, "during test, pathQuery sen_candli_file and path_trivial_file must be set "
    if not args.init_checkpoint:
        raise ValueError("args 'init_checkpoint' should be set if"
                         "only doing prediction!")
    init_checkpoint(
        exe,
        args.init_checkpoint,
        main_program=startup_prog,
        use_fp16=args.use_fp16)


def init_train_checkpoint(args, exe, startup_prog):
    if args.init_checkpoint and args.init_pretraining_params:
        logger.info(
            "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
            "both are set! Only arg 'init_checkpoint' is made valid.")
    if args.init_checkpoint:
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16,
            print_var_verbose=False)
    elif args.init_pretraining_params:
        init_pretraining_params(
            exe,
            args.init_pretraining_params,
            main_program=startup_prog,
            use_fp16=args.use_fp16)


def get_data_reader(args, data_file, epoch, is_training, shuffle, dev_count, vocab_size):
    if args.dataset.lower() in ["pathqueryfb", "pathquerywn"]:
        Reader = PathqueryDataReader
    else:
        Reader = KBCDataReader
    data_reader = Reader(
        vocab_path=args.vocab_path,
        data_path=data_file,
        max_seq_len=args.max_seq_len,
        batch_size=args.batch_size,
        is_training=is_training,
        shuffle=shuffle,
        dev_count=dev_count,
        epoch=epoch,
        vocab_size=vocab_size)
    return data_reader


if __name__ == '__main__':
    print_arguments(args)
    main(args)