pathquery_data_preprocess.py 12.9 KB
Newer Older
K
kgresearch 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
data preprocess for pathquery datasets
"""
import os
import sys
import time
import logging
import argparse
from kbc_data_preprocess import write_vocab
from kbc_data_preprocess import load_vocab
from kbc_data_preprocess import generate_mask_type
from collections import defaultdict, Counter

logging.basicConfig(
    format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
    datefmt='%m/%d/%Y %H:%M:%S')
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)

inverted = lambda r: r[:2] == '**'
invert = lambda r: r[2:] if inverted(r) else '**' + r


class EvalDataset(object):
    def __init__(self, train_file, test_file):
        self.spo_train_fp = train_file
        self.spo_test_fp = test_file
        train_triples = self._load_spo_triples(self.spo_train_fp)
        test_triples = self._load_spo_triples(self.spo_test_fp)
        #logger.debug(">>train triples cnt:%d" % len(train_triples))
        #logger.debug(">>test triples cnt:%d" % len(test_triples))
        _train_cnt = len(train_triples)
        all_triples = train_triples
        all_triples.update(test_triples)
        self.full_graph = Graph(all_triples)
        logger.debug(self.full_graph)

    def _load_spo_triples(self, spo_path):
        """
        :param spo_path:
        :return:  set of (s,r,t) original triples
        """
        logger.debug(">> Begin load base spo for %s at %s" %
                     (spo_path, time.ctime()))
        triples = set()
        for line in open(spo_path):
            segs = line.strip().split("\t")
            assert len(segs) == 3
            s, p, o = segs
            triples.add((s, p, o))
        logger.debug(">> Loaded spo triples :%s  cnt:%d" %
                     (spo_path, len(triples)))
        logger.debug(">> End load spo for %s at %s" % (spo_path, time.ctime()))
        return triples


class Graph(object):
    def __init__(self, triples):
        self.triples = triples
        neighbors = defaultdict(lambda: defaultdict(set))
        relation_args = defaultdict(lambda: defaultdict(set))

        logger.info(">> Begin building graph at %s" % (time.ctime()))
        self._node_set = set()
        for s, r, t in triples:
            relation_args[r]['s'].add(s)
            relation_args[r]['t'].add(t)
            neighbors[s][r].add(t)
            neighbors[t][invert(r)].add(s)
            self._node_set.add(t)
            self._node_set.add(s)

        def freeze(d):
            frozen = {}
            for key, subdict in d.iteritems():
                frozen[key] = {}
                for subkey, set_val in subdict.iteritems():
                    frozen[key][subkey] = tuple(set_val)
            return frozen

        self.neighbors = freeze(neighbors)
        self.relation_args = freeze(relation_args)
        logger.info(">> Done building graph at %s" % (time.ctime()))

    def __repr__(self):
        s = ""
        s += "graph.relations_args cnt %d\t" % len(self.relation_args)
        s += "graph.neighbors cnt %d\t" % len(self.neighbors)
        s += "graph.neighbors node set cnt %d" % len(self._node_set)
        return s

    def walk_all(self, start, path):
        """
        walk from start and get all the paths
        :param start:  start entity
        :param path: (r1, r2, ...,rk)
        :return: entities set for candidates path
        """
        set_s = set()
        set_t = set()
        set_s.add(start)
        for _, r in enumerate(path):
            if len(set_s) == 0:
                return set()
            for _s in set_s:
                if _s in self.neighbors and r in self.neighbors[_s]:
                    _tset = set(self.neighbors[_s][r])  #tupe to set
                    set_t.update(_tset)
            set_s = set_t.copy()
            set_t.clear()
        return set_s

    def repr_walk_all_ret(self, start, path, MAX_T=20):
        cand_set = self.walk_all(start, path)
        if len(cand_set) == 0:
            return ">>start{} path:{} end: EMPTY!".format(
                start, "->".join(list(path)))
        _len = len(cand_set) if len(cand_set) < MAX_T else MAX_T
        cand_node_str = ", ".join(cand_set[:_len])
        return ">>start{} path:{} end: {}".format(
            start, "->".join(list(path)), cand_node_str)

    def type_matching_entities(self, path, position="t"):
        assert (position == "t")
        if position == "t":
            r = path[-1]
        elif position == "s":
            r = path[0]
        else:
            logger.error(">>UNKNOWN position at type_matching_entities")
            raise ValueError(position)
        try:
            if not inverted(r):
                return r, self.relation_args[r][position]
            else:
                inv_pos = 's' if position == "t" else "t"
                return r, self.relation_args[invert(r)][inv_pos]
        except KeyError:
            logger.error(
                ">>UNKNOWN path value at type_matching_entities :%s from path:%s"
                % (r, path))
            return None, tuple()

    def is_trival_query(self, start, path):
        """
        :param path:
        :return: Boolean if True/False, is all candidates are right answers, return True
        """
        #todo: check right again
        cand_set = self.type_matching_entities(path, "t")
        ans_set = self.walk_all(start, path)
        _set = cand_set - ans_set
        if len(_set) == 0:
            return True
        else:
            return False


def get_unique_entities_relations(train_file, dev_file, test_file):
    entity_lst = dict()
    relation_lst = dict()
    all_files = [train_file, dev_file, test_file]
    for input_file in all_files:
        with open(input_file, "r") as f:
            for line in f.readlines():
                tokens = line.strip().split("\t")
                assert len(tokens) == 3
                entity_lst[tokens[0]] = len(entity_lst)
                entity_lst[tokens[2]] = len(entity_lst)
                relations = tokens[1].split(",")
                for relation in relations:
                    relation_lst[relation] = len(relation_lst)
    print(">> Number of unique entities: %s" % len(entity_lst))
    print(">> Number of unique relations: %s" % len(relation_lst))
    return entity_lst, relation_lst


def filter_base_data(raw_train_file, raw_dev_file, raw_test_file,
                     train_base_file, dev_base_file, test_base_file):
    def fil_base(input_file, output_file):
        fout = open(output_file, "w")
        base_n = 0
        with open(input_file, "r") as f:
            for line in f.readlines():
                tokens = line.strip().split("\t")
                assert len(tokens) == 3
                relations = tokens[1].split(",")
                if len(relations) == 1:
                    fout.write(line)
                    base_n += 1
        fout.close()
        return base_n

    train_base_n = fil_base(raw_train_file, train_base_file)
    dev_base_n = fil_base(raw_dev_file, dev_base_file)
    test_base_n = fil_base(raw_test_file, test_base_file)
    print(">> Train base cnt:%d" % train_base_n)
    print(">> Valid base cnt:%d" % dev_base_n)
    print(">> Test base cnt:%d" % test_base_n)


def generate_onlytail_mask_type(input_file, output_file):
    with open(output_file, "w") as fw:
        with open(input_file, "r") as fr:
            for line in fr.readlines():
                fw.write(line.strip('\r \n') + "\tMASK_TAIL\n")


def generate_eval_files(vocab_path, raw_test_file, train_base_file,
                        dev_base_file, test_base_file, sen_candli_file,
                        trivial_sen_file):
    token2id = load_vocab(vocab_path)

    eval_data = EvalDataset(train_base_file, test_base_file)

    fout_sen_cand = open(sen_candli_file, "w")
    fout_q_trival = open(trivial_sen_file, "w")

    sen_candli_cnt = trivial_sen_cnt = 0
    j = 0
    for line in open(raw_test_file):
        line = line.strip()
        j += 1
        segs = line.split("\t")
        s = segs[0]
        t = segs[2]
        path = tuple(segs[1].split(","))

        q_set = eval_data.full_graph.walk_all(s, path)
        r, cand_set = eval_data.full_graph.type_matching_entities(path, "t")
        cand_set = set(cand_set)
        neg_set = cand_set - q_set

        sen_tokens = []
        sen_tokens.append(line.split("\t")[0])
        sen_tokens.extend(line.split("\t")[1].split(","))
        sen_tokens.append(line.split("\t")[2])
        sen_id = [str(token2id[x]) for x in sen_tokens]
        if len(neg_set) == 0:
            trivial_sen_cnt += 1
            #fout_q_trival.write(line + "\n")
            fout_q_trival.write(" ".join(sen_id) + "\n")
        else:
            sen_candli_cnt += 1
            candli_id_set = [str(token2id[x]) for x in neg_set]
            sen_canli_str = "%s\t%s" % (" ".join(sen_id),
                                        " ".join(list(candli_id_set)))
            fout_sen_cand.write(sen_canli_str + "\n")

        if len(cand_set) < len(q_set):
            logger.error("ERROR! cand_set %d < q_set %d  at line[%d]:%s" %
                         (len(cand_set), len(q_set), j, line))
        if j % 100 == 0:
            logger.debug(" ...processing %d at %s" % (j, time.ctime()))
        if -100 > 0 and j >= 100:
            break
    logger.info(">> sen_canli_set count:%d " % sen_candli_cnt)
    logger.info(">> trivial sen count:%d " % trivial_sen_cnt)
    logger.info(">> Finish generate evaluation candidates for %s file at %s" %
                (raw_test_file, time.ctime()))


def pathquery_data_preprocess(raw_train_file, raw_dev_file, raw_test_file,
                              vocab_path, sen_candli_file, trivial_sen_file,
                              new_train_file, new_dev_file, new_test_file,
                              train_base_file, dev_base_file, test_base_file):
    entity_lst, relation_lst = get_unique_entities_relations(
        raw_train_file, raw_dev_file, raw_test_file)
    write_vocab(vocab_path, entity_lst, relation_lst)
    filter_base_data(raw_train_file, raw_dev_file, raw_test_file,
                     train_base_file, dev_base_file, test_base_file)
    generate_mask_type(raw_train_file, new_train_file)
    generate_onlytail_mask_type(raw_dev_file, new_dev_file)
    generate_onlytail_mask_type(raw_test_file, new_test_file)
    vocab = load_vocab(vocab_path)
    generate_eval_files(vocab_path, raw_test_file, train_base_file,
                        dev_base_file, test_base_file, sen_candli_file,
                        trivial_sen_file)


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--task",
        type=str,
        required=True,
        default=None,
        help="task name: fb15k, fb15k237, wn18rr, wn18, pathqueryFB, pathqueryWN"
    )
    parser.add_argument(
        "--dir",
        type=str,
        required=True,
        default=None,
        help="task data directory")
    parser.add_argument(
        "--train",
        type=str,
        required=False,
        default="train",
        help="train file name, default train.txt")
    parser.add_argument(
        "--valid",
        type=str,
        required=False,
        default="dev",
        help="valid file name, default valid.txt")
    parser.add_argument(
        "--test",
        type=str,
        required=False,
        default="test",
        help="test file name, default test.txt")
    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = get_args()
    task = args.task.lower()
    assert task in ["pathqueryfb", "pathquerywn"]
    raw_train_file = os.path.join(args.dir, args.train)
    raw_dev_file = os.path.join(args.dir, args.valid)
    raw_test_file = os.path.join(args.dir, args.test)

    new_train_file = os.path.join(args.dir, "train.coke.txt")
    new_test_file = os.path.join(args.dir, "test.coke.txt")
    new_dev_file = os.path.join(args.dir, "dev.coke.txt")

    vocab_file = os.path.join(args.dir, "vocab.txt")
    sen_candli_file = os.path.join(args.dir, "sen_candli.txt")
    trivial_sen_file = os.path.join(args.dir, "trivial_sen.txt")

    train_base_file = os.path.join(args.dir, "train.base.txt")
    test_base_file = os.path.join(args.dir, "test.base.txt")
    dev_base_file = os.path.join(args.dir, "dev.base.txt")

    pathquery_data_preprocess(raw_train_file, raw_dev_file, raw_test_file,
                              vocab_file, sen_candli_file, trivial_sen_file,
                              new_train_file, new_dev_file, new_test_file,
                              train_base_file, dev_base_file, test_base_file)