coke.py 7.5 KB
Newer Older
K
kgresearch 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CoKE model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import six
import json
import logging

import numpy as np
import paddle.fluid as fluid
from model.transformer_encoder import encoder, pre_process_layer

logging.basicConfig(
    format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
    datefmt='%m/%d/%Y %H:%M:%S',
    level=logging.INFO)
logger = logging.getLogger(__name__)


class CoKEModel(object):
    def __init__(self,
                 src_ids,
                 position_ids,
                 input_mask,
                 config,
                 soft_label=0.9,
                 weight_sharing=True,
                 use_fp16=False):

        self._emb_size = config['hidden_size']
        self._n_layer = config['num_hidden_layers']
        self._n_head = config['num_attention_heads']
        self._voc_size = config['vocab_size']
        self._n_relation = config['num_relations']
        self._max_position_seq_len = config['max_position_embeddings']
        self._hidden_act = config['hidden_act']
        self._prepostprocess_dropout = config['hidden_dropout_prob']
        self._attention_dropout = config['attention_probs_dropout_prob']
        self._intermediate_size = config['intermediate_size']
        self._soft_label = soft_label
        self._weight_sharing = weight_sharing

        self._word_emb_name = "word_embedding"
        self._pos_emb_name = "pos_embedding"
        self._dtype = "float16" if use_fp16 else "float32"

        # Initialize all weigths by truncated normal initializer, and all biases
        # will be initialized by constant zero by default.
        self._param_initializer = fluid.initializer.TruncatedNormal(
            scale=config['initializer_range'])

        self._build_model(src_ids, position_ids, input_mask)

    def _build_model(self, src_ids, position_ids, input_mask):
        # padding id in vocabulary must be set to 0
        emb_out = fluid.layers.embedding(
            input=src_ids,
            size=[self._voc_size, self._emb_size],
            dtype=self._dtype,
            param_attr=fluid.ParamAttr(
                name=self._word_emb_name, initializer=self._param_initializer),
            is_sparse=False)
        position_emb_out = fluid.layers.embedding(
            input=position_ids,
            size=[self._max_position_seq_len, self._emb_size],
            dtype=self._dtype,
            param_attr=fluid.ParamAttr(
                name=self._pos_emb_name, initializer=self._param_initializer))

        emb_out = emb_out + position_emb_out

        emb_out = pre_process_layer(
            emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')

        if self._dtype == "float16":
            input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)

        self_attn_mask = fluid.layers.matmul(
            x=input_mask, y=input_mask, transpose_y=True)
        self_attn_mask = fluid.layers.scale(
            x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
        n_head_self_attn_mask = fluid.layers.stack(
            x=[self_attn_mask] * self._n_head, axis=1)
        n_head_self_attn_mask.stop_gradient = True

        self._enc_out = encoder(
            enc_input=emb_out,
            attn_bias=n_head_self_attn_mask,
            n_layer=self._n_layer,
            n_head=self._n_head,
            d_key=self._emb_size // self._n_head,
            d_value=self._emb_size // self._n_head,
            d_model=self._emb_size,
            d_inner_hid=self._intermediate_size,
            prepostprocess_dropout=self._prepostprocess_dropout,
            attention_dropout=self._attention_dropout,
            relu_dropout=0,
            hidden_act=self._hidden_act,
            preprocess_cmd="",
            postprocess_cmd="dan",
            param_initializer=self._param_initializer,
            name='encoder')

    #def get_sequence_output(self):
    #    return self._enc_out

    def get_pretraining_output(self, mask_label, mask_pos):
        """Get the loss & fc_out for training"""
        mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')

        reshaped_emb_out = fluid.layers.reshape(
            x=self._enc_out, shape=[-1, self._emb_size])
        # extract masked tokens' feature
        mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)

        # transform: fc
        mask_trans_feat = fluid.layers.fc(
            input=mask_feat,
            size=self._emb_size,
            act=self._hidden_act,
            param_attr=fluid.ParamAttr(
                name='mask_lm_trans_fc.w_0',
                initializer=self._param_initializer),
            bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
        # transform: layer norm
        mask_trans_feat = pre_process_layer(
            mask_trans_feat, 'n', name='mask_lm_trans')

        mask_lm_out_bias_attr = fluid.ParamAttr(
            name="mask_lm_out_fc.b_0",
            initializer=fluid.initializer.Constant(value=0.0))
        if self._weight_sharing:
            fc_out = fluid.layers.matmul(
                x=mask_trans_feat,
                y=fluid.default_main_program().global_block().var(
                    self._word_emb_name),
                transpose_y=True)
            fc_out += fluid.layers.create_parameter(
                shape=[self._voc_size],
                dtype=self._dtype,
                attr=mask_lm_out_bias_attr,
                is_bias=True)
        else:
            fc_out = fluid.layers.fc(input=mask_trans_feat,
                                     size=self._voc_size,
                                     param_attr=fluid.ParamAttr(
                                         name="mask_lm_out_fc.w_0",
                                         initializer=self._param_initializer),
                                     bias_attr=mask_lm_out_bias_attr)
        #generate soft labels for loss cross entropy loss
        one_hot_labels = fluid.layers.one_hot(
            input=mask_label, depth=self._voc_size)
        entity_indicator = fluid.layers.fill_constant_batch_size_like(
            input=mask_label,
            shape=[-1, (self._voc_size - self._n_relation)],
            dtype='int64',
            value=0)
        relation_indicator = fluid.layers.fill_constant_batch_size_like(
            input=mask_label,
            shape=[-1, self._n_relation],
            dtype='int64',
            value=1)
        is_relation = fluid.layers.concat(
            input=[entity_indicator, relation_indicator], axis=-1)
        soft_labels = one_hot_labels * self._soft_label \
                      + (1.0 - one_hot_labels - is_relation) \
                      * ((1.0 - self._soft_label) / (self._voc_size - 1 - self._n_relation))
        soft_labels.stop_gradient = True

        mask_lm_loss = fluid.layers.softmax_with_cross_entropy(
            logits=fc_out, label=soft_labels, soft_label=True)
        mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)

        return mean_mask_lm_loss, fc_out