introduction_cn.ipynb 16.7 KB
Notebook
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. PP-Vehicle简介\n",
    "PaddleDetection深入探索核心行业的高频场景,提供了车辆场景的开箱即用分析工具,支持图片/单镜头视频/多镜头视频/在线视频流多种输入方式,广泛应用于智慧交通、智慧城市、工业巡检等领域。支持服务器端部署及TensorRT加速,T4服务器上可达到实时!\n",
    "PP-Vehicle囊括四大交通场景核心功能:车牌识别、属性识别、车流量统计、违章检测。\n",
    "\n",
    "PP-Vehicle由飞桨官方出品,是基于PaddleDetection的车辆分析pipeline。\n",
    "更多关于PaddleDetection可以点击https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/deploy/pipeline 进行了解。\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. 模型效果及应用场景\n",
    "### 2.1 PP-Vehicle 模型效果:\n",
    "\n",
    "| 任务            | 端到端速度(ms)|  模型方案  |  模型体积 |\n",
    "| :---------:     | :-------:  |  :------: |:------: |\n",
    "|  车辆检测(高精度)  | 25.7ms  |  [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M |  \n",
    "|  车辆检测(轻量级)  | 13.2ms  |  [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip) | 27M |\n",
    "|  车辆跟踪(高精度)  | 40ms  |  [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M |\n",
    "|  车辆跟踪(轻量级)  | 25ms  |  [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip) | 27M |\n",
    "|  车牌识别  |   4.68ms |  [车牌检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_det_infer.tar.gz) <br> [车牌字符识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_rec_infer.tar.gz) | 车牌检测:3.9M  <br> 车牌字符识别: 12M |\n",
    "|  车辆属性  |   7.31ms | [车辆属性](https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip) | 7.2M |\n",
    "\n",
    "\n",
    "### 2.2 应用场景:\n",
    "| 功能       | 方案优势                                                                                    | 示例图                                                                                                                                         |\n",
    "| ---------- | ------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------- |\n",
    "| **车牌识别**   | 支持传统车牌和新能源绿色车牌 <br/><br/> 车牌识别采用长间隔采样识别与多次结果统计投票方式,算力消耗少,识别精度高,结果稳定性好。 检测模型 hmean: 0.979; 识别模型 acc: 0.773          | <img title=\"\" src=\"https://user-images.githubusercontent.com/48054808/185027987-6144cafd-0286-4c32-8425-7ab9515d1ec3.png\" alt=\"\" width=\"191\"> |\n",
    "| **车辆属性分析** | 支持多种车型、颜色类别识别 <br/><br/> 使用更强力的Backbone模型PP-HGNet、PP-LCNet,精度高、速度快。识别精度: 90.81 | <img title=\"\" src=\"https://user-images.githubusercontent.com/48054808/185044490-00edd930-1885-4e79-b3d4-3a39a77dea93.gif\" alt=\"\" width=\"207\"> |\n",
    "| **违章检测**   | 简单易用:一行命令即可实现违停检测,自定义设置区域 <br/><br/> 检测、跟踪效果好,可实现违停车辆车牌识别    | <img title=\"\" src=\"https://user-images.githubusercontent.com/48054808/185028419-58ae0af8-a035-42e7-9583-25f5e4ce0169.png\" alt=\"\" width=\"209\"> |\n",
    "| **车流量计数**  | 简单易用:一行命令即可开启功能,自定义出入位置 <br/><br/> 可提供目标跟踪轨迹显示,统计准确度高        | <img title=\"\" src=\"https://user-images.githubusercontent.com/48054808/185028798-9e07379f-7486-4266-9d27-3aec943593e0.gif\" alt=\"\" width=\"200\"> |\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. 模型如何使用\n",
    "\n",
    "(在Jupyter Notebook上运行时需要加\"!\",若是cd命令则需加\"%\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "vscode": {
     "languageId": "plaintext"
    }
   },
   "outputs": [],
   "source": [
    "## 环境准备\n",
    "\n",
    "环境要求: PaddleDetection版本 >= release/2.5 或 develop版本\n",
    "\n",
    "PaddlePaddle和PaddleDetection安装\n",
    "\n",
    "```\n",
    "# PaddlePaddle CUDA10.1\n",
    "python -m pip install paddlepaddle-gpu==2.2.2.post101 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html\n",
    "\n",
    "# PaddlePaddle CPU\n",
    "python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple\n",
    "\n",
    "# 克隆PaddleDetection仓库\n",
    "cd <path/to/clone/PaddleDetection>\n",
    "git clone https://github.com/PaddlePaddle/PaddleDetection.git\n",
    "\n",
    "# 安装其他依赖\n",
    "cd PaddleDetection\n",
    "pip install -r requirements.txt\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "### 3.1 配置文件说明\n",
    "\n",
    "PP-Vehicle相关配置位于```deploy/pipeline/config/infer_cfg_ppvehicle.yml```中,存放模型路径,完成不同功能需要设置不同的任务类型\n",
    "\n",
    "功能及任务类型对应表单如下:\n",
    "\n",
    "| 输入类型 | 功能 | 任务类型 | 配置项 |\n",
    "|-------|-------|----------|-----|\n",
    "| 图片 | 属性识别 | 目标检测 属性识别 | DET ATTR |\n",
    "| 单镜头视频 | 属性识别 | 多目标跟踪 属性识别 | MOT ATTR |\n",
    "| 单镜头视频 | 车牌识别 | 多目标跟踪 车牌识别 | MOT VEHICLEPLATE |\n",
    "\n",
    "\n",
    "例如基于视频输入的属性识别,任务类型包含多目标跟踪和属性识别,具体配置如下:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "vscode": {
     "languageId": "plaintext"
    }
   },
   "outputs": [],
   "source": [
    "\n",
    "```\n",
    "crop_thresh: 0.5\n",
    "visual: True\n",
    "warmup_frame: 50\n",
    "\n",
    "MOT:\n",
    "  model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip\n",
    "  tracker_config: deploy/pipeline/config/tracker_config.yml\n",
    "  batch_size: 1\n",
    "  enable: True\n",
    "\n",
    "VEHICLE_ATTR:\n",
    "  model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip\n",
    "  batch_size: 8\n",
    "  color_threshold: 0.5\n",
    "  type_threshold: 0.5\n",
    "  enable: True\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**注意:**\n",
    "\n",
    "- 如果用户需要实现不同任务,可以在配置文件对应enable选项设置为True。\n",
    "- 如果用户仅需要修改模型文件路径,可以在命令行中--config后面紧跟着 `-o MOT.model_dir=ppyoloe/` 进行修改即可,也可以手动修改配置文件中的相应模型路径,详细说明参考下方参数说明文档。\n",
    "\n",
    "### 3.2 预测部署"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "vscode": {
     "languageId": "plaintext"
    }
   },
   "outputs": [],
   "source": [
    "# 1. 直接使用默认配置或者examples中配置文件,或者直接在`infer_cfg_ppvehicle.yml`中修改配置:\n",
    "```\n",
    "# 例:车辆检测,指定配置文件路径和测试图片\n",
    "python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml --image_file=test_image.jpg --device=gpu\n",
    "\n",
    "# 例:车辆车牌识别,指定配置文件路径和测试视频\n",
    "python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_vehicle_plate.yml --video_file=test_video.mp4 --device=gpu\n",
    "```\n",
    "\n",
    "#2. 使用命令行进行功能开启,或者模型路径修改:\n",
    "```\n",
    "# 例:车辆跟踪,指定配置文件路径和测试视频,命令行中开启MOT模型并修改模型路径,命令行中指定的模型路径优先级高于配置文件\n",
    "python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml -o MOT.enable=True MOT.model_dir=ppyoloe_infer/ --video_file=test_video.mp4 --device=gpu\n",
    "\n",
    "# 例:车辆违章分析,指定配置文件和测试视频,命令行中指定违停区域设置、违停时间判断。\n",
    "python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_illegal_parking.yml \\\n",
    "                                                   --video_file=../car_test.mov \\\n",
    "                                                   --device=gpu \\\n",
    "                                                   --draw_center_traj \\\n",
    "                                                   --illegal_parking_time=3 \\\n",
    "                                                   --region_type=custom \\\n",
    "                                                   --region_polygon 600 300 1300 300 1300 800 600 800\n",
    "\n",
    "```\n",
    "\n",
    "#3. rtsp推拉流\n",
    "- rtsp拉流预测\n",
    "\n",
    "对rtsp拉流的支持,使用--rtsp RTSP [RTSP ...]参数指定一路或者多路rtsp视频流,如果是多路地址中间用空格隔开。(或者video_file后面的视频地址直接更换为rtsp流地址),示例如下:\n",
    "```\n",
    "# 例:车辆属性识别,单路视频流\n",
    "python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_vehicle_attr.yml -o visual=False --rtsp rtsp://[YOUR_RTSP_SITE]  --device=gpu\n",
    "\n",
    "# 例:车辆属性识别,多路视频流\n",
    "python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_vehicle_attr.yml -o visual=False --rtsp rtsp://[YOUR_RTSP_SITE1]  rtsp://[YOUR_RTSP_SITE2] --device=gpu\n",
    "```\n",
    "\n",
    "#视频结果推流rtsp\n",
    "#预测结果进行rtsp推流,使用--pushurl rtsp:[IP] 推流到IP地址端,PC端可以使用[VLC播放器](https://vlc.onl/)打开网络流进行播放,播放地址为 `rtsp:[IP]/videoname`。其中`videoname`是预测的视频文件名,如果视频来源是本地摄像头则`videoname`默认为`output`.\n",
    "```\n",
    "# 例:车辆属性识别,单路视频流,该示例播放地址为 rtsp://[YOUR_SERVER_IP]:8554/test_video\n",
    "python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_vehicle_attr.yml -o visual=False --video_file=test_video.mp4  --device=gpu --pushurl rtsp://[YOUR_SERVER_IP]:8554\n",
    "```\n",
    "#注:\n",
    "#1. rtsp推流服务基于 [rtsp-simple-server](https://github.com/aler9/rtsp-simple-server), 如使用推流功能请先开启该服务.\n",
    "#2. rtsp推流如果模型处理速度跟不上会出现很明显的卡顿现象,建议跟踪模型使用ppyoloe_s版本,即修改配置中跟踪模型mot_ppyoloe_l_36e_pipeline.zip替换为mot_ppyoloe_s_36e_pipeline.zip。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "### 3.3 Jetson部署说明\n",
    "\n",
    "由于Jetson平台算力相比服务器有较大差距,有如下使用建议:\n",
    "\n",
    "1. 模型选择轻量级版本,特别是跟踪模型,推荐使用`ppyoloe_s: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip`\n",
    "2. 开启跟踪跳帧功能,推荐使用2或者3: `skip_frame_num: 3`\n",
    "\n",
    "使用该推荐配置,在TX2平台上可以达到较高速率,经测试属性案例达到20fps。\n",
    "\n",
    "可以直接修改配置文件(推荐),也可以在命令行中修改(字段较长,不推荐)。\n",
    "\n",
    "### 参数说明\n",
    "\n",
    "| 参数 | 是否必须|含义 |\n",
    "|-------|-------|----------|\n",
    "| --config | Yes | 配置文件路径 |\n",
    "| -o | Option | 覆盖配置文件中对应的配置  |\n",
    "| --image_file | Option | 需要预测的图片 |\n",
    "| --image_dir  | Option |  要预测的图片文件夹路径   |\n",
    "| --video_file | Option | 需要预测的视频,或者rtsp流地址(推荐使用rtsp参数) |\n",
    "| --rtsp | Option | rtsp视频流地址,支持一路或者多路同时输入 |\n",
    "| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测,可设置为:0 - (摄像头数目-1) ),预测过程中在可视化界面按`q`退出输出预测结果到:output/output.mp4|\n",
    "| --device | Option | 运行时的设备,可选择`CPU/GPU/XPU`,默认为`CPU`|\n",
    "| --pushurl | Option| 对预测结果视频进行推流的地址,以rtsp://开头,该选项优先级高于视频结果本地存储,打开时不再另外存储本地预测结果视频|\n",
    "| --output_dir | Option|可视化结果保存的根目录,默认为output/|\n",
    "| --run_mode | Option |使用GPU时,默认为paddle, 可选(paddle/trt_fp32/trt_fp16/trt_int8)|\n",
    "| --enable_mkldnn | Option | CPU预测中是否开启MKLDNN加速,默认为False |\n",
    "| --cpu_threads | Option| 设置cpu线程数,默认为1 |\n",
    "| --trt_calib_mode | Option| TensorRT是否使用校准功能,默认为False。使用TensorRT的int8功能时,需设置为True,使用PaddleSlim量化后的模型时需要设置为False |\n",
    "| --do_entrance_counting | Option | 是否统计出入口流量,默认为False |\n",
    "| --draw_center_traj | Option | 是否绘制跟踪轨迹,默认为False |\n",
    "| --region_type | Option | 'horizontal'(默认值)、'vertical':表示流量统计方向选择;'custom':表示设置闯入区域 |\n",
    "| --region_polygon | Option | 设置闯入区域多边形多点的坐标,无默认值 |\n",
    "| --do_break_in_counting | Option | 此项表示做区域闯入检查 |\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 4. 方案介绍\n",
    "PP-Vehicle 整体方案如下图所示:\n",
    "\n",
    "<div width=\"1000\" align=\"center\">\n",
    "  <img src=\"ppvehicle.png\"/>\n",
    "</div>\n",
    "\n",
    "\n",
    "### 车辆检测\n",
    "- 采用PP-YOLOE L 作为目标检测模型\n",
    "- 详细文档参考[PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/configs/ppyoloe)和[检测跟踪文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/pipeline/docs/tutorials/ppvehicle_mot.md)\n",
    "\n",
    "### 车辆跟踪\n",
    "- 采用SDE方案完成车辆跟踪\n",
    "- 检测模型使用PP-YOLOE L(高精度)和S(轻量级)\n",
    "- 跟踪模块采用OC-SORT方案\n",
    "- 详细文档参考[OC-SORT](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/configs/mot/ocsort)和[检测跟踪文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/pipeline/docs/tutorials/ppvehicle_mot.md)\n",
    "\n",
    "### 属性识别\n",
    "- 使用PaddleClas提供的特色模型PP-LCNet,实现对车辆颜色及车型属性的识别。\n",
    "- 详细文档参考[属性识别](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/pipeline/docs/tutorials/ppvehicle_attribute.md)\n",
    "\n",
    "### 车牌识别\n",
    "- 使用PaddleOCR特色模型ch_PP-OCRv3_det+ch_PP-OCRv3_rec模型,识别车牌号码\n",
    "- 详细文档参考[车牌识别](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/pipeline/docs/tutorials/ppvehicle_plate.md)\n",
    "\n",
    "### 违章停车识别\n",
    "- 车辆跟踪模型使用高精度模型PP-YOLOE L,根据车辆的跟踪轨迹以及指定的违停区域判断是否违章停车,如果存在则展示违章停车车牌号。\n",
    "- 详细文档参考[违章停车识别](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/pipeline/docs/tutorials/ppvehicle_illegal_parking.md)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}