model.py 14.2 KB
Newer Older
R
ranqiu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#coding=utf-8

import math

import paddle.v2 as paddle

__all__ = ["conv_seq2seq"]


def gated_conv_with_batchnorm(input,
                              size,
                              context_len,
                              context_start=None,
                              learning_rate=1.0,
                              drop_rate=0.):
    """
    Definition of the convolution block.

    :param input: The input of this block.
    :type input: LayerOutput
    :param size: The dimension of the block's output.
    :type size: int
    :param context_len: The context length of the convolution.
    :type context_len: int
    :param context_start: The start position of the context.
    :type context_start: int
    :param learning_rate: The learning rate factor of the parameters in the block.
                          The actual learning rate is the product of the global
                          learning rate and this factor.
    :type learning_rate: float
    :param drop_rate: Dropout rate.
    :type drop_rate: float
    :return: The output of the convolution block.
    :rtype: LayerOutput
    """
    input = paddle.layer.dropout(input=input, dropout_rate=drop_rate)

    context = paddle.layer.mixed(
        size=input.size * context_len,
        input=paddle.layer.context_projection(
            input=input, context_len=context_len, context_start=context_start))

    raw_conv = paddle.layer.fc(
        input=context,
        size=size * 2,
        act=paddle.activation.Linear(),
        param_attr=paddle.attr.Param(
            initial_mean=0.,
            initial_std=math.sqrt(4.0 * (1.0 - drop_rate) / context.size),
            learning_rate=learning_rate),
        bias_attr=False)

    batch_norm_conv = paddle.layer.batch_norm(
        input=raw_conv,
        act=paddle.activation.Linear(),
        param_attr=paddle.attr.Param(learning_rate=learning_rate))

    with paddle.layer.mixed(size=size) as conv:
        conv += paddle.layer.identity_projection(
            batch_norm_conv, size=size, offset=0)

    with paddle.layer.mixed(size=size, act=paddle.activation.Sigmoid()) as gate:
        gate += paddle.layer.identity_projection(
            batch_norm_conv, size=size, offset=size)

    with paddle.layer.mixed(size=size) as gated_conv:
        gated_conv += paddle.layer.dotmul_operator(conv, gate)

    return gated_conv


def encoder(token_emb,
            pos_emb,
            conv_blocks=[(256, 3)] * 5,
            num_attention=3,
            drop_rate=0.1):
    """
    Definition of the encoder.

    :param token_emb: The embedding vector of the input token.
    :type token_emb: LayerOutput
    :param pos_emb: The embedding vector of the input token's position.
    :type pos_emb: LayerOutput
    :param conv_blocks: The scale list of the convolution blocks. Each element of
                        the list contains output dimension and context length of
                        the corresponding convolution block.
    :type conv_blocks: list of tuple
    :param num_attention: The total number of the attention modules used in the decoder.
    :type num_attention: int
    :param drop_rate: Dropout rate.
    :type drop_rate: float
    :return: The input token encoding.
    :rtype: LayerOutput
    """
    embedding = paddle.layer.addto(
        input=[token_emb, pos_emb],
        layer_attr=paddle.attr.Extra(drop_rate=drop_rate))

    proj_size = conv_blocks[0][0]
    block_input = paddle.layer.fc(
        input=embedding,
        size=proj_size,
        act=paddle.activation.Linear(),
        param_attr=paddle.attr.Param(
            initial_mean=0.,
            initial_std=math.sqrt((1.0 - drop_rate) / embedding.size),
            learning_rate=1.0 / (2.0 * num_attention)),
        bias_attr=True, )

    for (size, context_len) in conv_blocks:
        if block_input.size == size:
            residual = block_input
        else:
            residual = paddle.layer.fc(
                input=block_input,
                size=size,
                act=paddle.activation.Linear(),
                param_attr=paddle.attr.Param(learning_rate=1.0 /
                                             (2.0 * num_attention)),
                bias_attr=True)

        gated_conv = gated_conv_with_batchnorm(
            input=block_input,
            size=size,
            context_len=context_len,
            learning_rate=1.0 / (2.0 * num_attention),
            drop_rate=drop_rate)

        with paddle.layer.mixed(size=size) as block_output:
            block_output += paddle.layer.identity_projection(residual)
            block_output += paddle.layer.identity_projection(gated_conv)

        # halve the variance of the sum
        block_output = paddle.layer.slope_intercept(
            input=block_output, slope=math.sqrt(0.5))

        block_input = block_output

    emb_dim = embedding.size
    encoded_vec = paddle.layer.fc(
        input=block_output,
        size=emb_dim,
        act=paddle.activation.Linear(),
        param_attr=paddle.attr.Param(learning_rate=1.0 / (2.0 * num_attention)),
        bias_attr=True)

    encoded_sum = paddle.layer.addto(input=[encoded_vec, embedding])

    # halve the variance of the sum
Y
yangyaming 已提交
150 151
    encoded_sum = paddle.layer.slope_intercept(
        input=encoded_sum, slope=math.sqrt(0.5))
R
ranqiu 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

    return encoded_vec, encoded_sum


def attention(decoder_state, cur_embedding, encoded_vec, encoded_sum):
    """
    Definition of the attention.

    :param decoder_state: The hidden state of the decoder.
    :type decoder_state: LayerOutput
    :param cur_embedding: The embedding vector of the current token.
    :type cur_embedding: LayerOutput
    :param encoded_vec: The source token encoding.
    :type encoded_vec: LayerOutput
    :param encoded_sum: The sum of the source token's encoding and embedding.
    :type encoded_sum: LayerOutput
    :return: A context vector.
    :rtype: LayerOutput
    """
    residual = decoder_state

    state_size = decoder_state.size
    emb_dim = cur_embedding.size
    with paddle.layer.mixed(size=emb_dim, bias_attr=True) as state_summary:
        state_summary += paddle.layer.full_matrix_projection(decoder_state)
        state_summary += paddle.layer.identity_projection(cur_embedding)

    # halve the variance of the sum
    state_summary = paddle.layer.slope_intercept(
        input=state_summary, slope=math.sqrt(0.5))

    expanded = paddle.layer.expand(input=state_summary, expand_as=encoded_vec)

    m = paddle.layer.linear_comb(weights=expanded, vectors=encoded_vec)

    attention_weight = paddle.layer.fc(
        input=m,
        size=1,
        act=paddle.activation.SequenceSoftmax(),
        bias_attr=False)

    scaled = paddle.layer.scaling(weight=attention_weight, input=encoded_sum)

    attended = paddle.layer.pooling(
        input=scaled, pooling_type=paddle.pooling.Sum())

    attended_proj = paddle.layer.fc(
        input=attended,
        size=state_size,
        act=paddle.activation.Linear(),
        bias_attr=True)

    attention_result = paddle.layer.addto(input=[attended_proj, residual])

    # halve the variance of the sum
    attention_result = paddle.layer.slope_intercept(
        input=attention_result, slope=math.sqrt(0.5))
    return attention_result


def decoder(token_emb,
            pos_emb,
            encoded_vec,
            encoded_sum,
            dict_size,
            conv_blocks=[(256, 3)] * 3,
            drop_rate=0.1):
    """
    Definition of the decoder.

    :param token_emb: The embedding vector of the input token.
    :type token_emb: LayerOutput
    :param pos_emb: The embedding vector of the input token's position.
    :type pos_emb: LayerOutput
    :param encoded_vec: The source token encoding.
    :type encoded_vec: LayerOutput
    :param encoded_sum: The sum of the source token's encoding and embedding.
    :type encoded_sum: LayerOutput
    :param dict_size: The size of the target dictionary.
    :type dict_size: int
    :param conv_blocks: The scale list of the convolution blocks. Each element
                        of the list contains output dimension and context length
                        of the corresponding convolution block.
    :type conv_blocks: list of tuple
    :param drop_rate: Dropout rate.
    :type drop_rate: float
    :return: The probability of the predicted token.
    :rtype: LayerOutput
    """

    def attention_step(decoder_state, cur_embedding, encoded_vec, encoded_sum):
        conditional = attention(
            decoder_state=decoder_state,
            cur_embedding=cur_embedding,
            encoded_vec=encoded_vec,
            encoded_sum=encoded_sum)
        return conditional

    embedding = paddle.layer.addto(
        input=[token_emb, pos_emb],
        layer_attr=paddle.attr.Extra(drop_rate=drop_rate))

    proj_size = conv_blocks[0][0]
    block_input = paddle.layer.fc(
        input=embedding,
        size=proj_size,
        act=paddle.activation.Linear(),
        param_attr=paddle.attr.Param(
            initial_mean=0.,
            initial_std=math.sqrt((1.0 - drop_rate) / embedding.size)),
        bias_attr=True, )

    for (size, context_len) in conv_blocks:
        if block_input.size == size:
            residual = block_input
        else:
            residual = paddle.layer.fc(
                input=block_input,
                size=size,
                act=paddle.activation.Linear(),
                bias_attr=True)

        decoder_state = gated_conv_with_batchnorm(
            input=block_input,
            size=size,
            context_len=context_len,
            context_start=0,
            drop_rate=drop_rate)

        group_inputs = [
            decoder_state,
            embedding,
            paddle.layer.StaticInput(input=encoded_vec),
            paddle.layer.StaticInput(input=encoded_sum),
        ]

        conditional = paddle.layer.recurrent_group(
            step=attention_step, input=group_inputs)

        block_output = paddle.layer.addto(input=[conditional, residual])

        # halve the variance of the sum
        block_output = paddle.layer.slope_intercept(
            input=block_output, slope=math.sqrt(0.5))

        block_input = block_output

    out_emb_dim = embedding.size
    block_output = paddle.layer.fc(
        input=block_output,
        size=out_emb_dim,
        act=paddle.activation.Linear(),
        layer_attr=paddle.attr.Extra(drop_rate=drop_rate))

    decoder_out = paddle.layer.fc(
        input=block_output,
        size=dict_size,
        act=paddle.activation.Softmax(),
        param_attr=paddle.attr.Param(
            initial_mean=0.,
            initial_std=math.sqrt((1.0 - drop_rate) / block_output.size)),
        bias_attr=True)

    return decoder_out


def conv_seq2seq(src_dict_size,
                 trg_dict_size,
                 pos_size,
                 emb_dim,
                 enc_conv_blocks=[(256, 3)] * 5,
                 dec_conv_blocks=[(256, 3)] * 3,
                 drop_rate=0.1,
                 is_infer=False):
    """
    Definition of convolutional sequence-to-sequence network.

    :param src_dict_size: The size of the source dictionary.
    :type src_dict_size: int
    :param trg_dict_size: The size of the target dictionary.
    :type trg_dict_size: int
    :param pos_size: The total number of the position indexes, which means
                     the maximum value of the index is pos_size - 1.
    :type pos_size: int
    :param emb_dim: The dimension of the embedding vector.
    :type emb_dim: int
    :param enc_conv_blocks: The scale list of the encoder's convolution blocks. Each element
                            of the list contains output dimension and context length of the
                            corresponding convolution block.
    :type enc_conv_blocks: list of tuple
    :param dec_conv_blocks: The scale list of the decoder's convolution blocks. Each element
                            of the list contains output dimension and context length of the
                            corresponding convolution block.
    :type dec_conv_blocks: list of tuple
    :param drop_rate: Dropout rate.
    :type drop_rate: float
    :param is_infer: Whether infer or not.
    :type is_infer: bool
    :return: Cost or output layer.
    :rtype: LayerOutput
    """
    src = paddle.layer.data(
        name='src_word',
        type=paddle.data_type.integer_value_sequence(src_dict_size))
    src_pos = paddle.layer.data(
        name='src_word_pos',
        type=paddle.data_type.integer_value_sequence(pos_size +
                                                     1))  # one for padding

    src_emb = paddle.layer.embedding(
        input=src,
        size=emb_dim,
        name='src_word_emb',
        param_attr=paddle.attr.Param(initial_mean=0., initial_std=0.1))
    src_pos_emb = paddle.layer.embedding(
        input=src_pos,
        size=emb_dim,
        name='src_pos_emb',
        param_attr=paddle.attr.Param(initial_mean=0., initial_std=0.1))

    num_attention = len(dec_conv_blocks)
    encoded_vec, encoded_sum = encoder(
        token_emb=src_emb,
        pos_emb=src_pos_emb,
        conv_blocks=enc_conv_blocks,
        num_attention=num_attention,
        drop_rate=drop_rate)

    trg = paddle.layer.data(
        name='trg_word',
        type=paddle.data_type.integer_value_sequence(trg_dict_size +
                                                     1))  # one for padding
    trg_pos = paddle.layer.data(
        name='trg_word_pos',
        type=paddle.data_type.integer_value_sequence(pos_size +
                                                     1))  # one for padding

    trg_emb = paddle.layer.embedding(
        input=trg,
        size=emb_dim,
        name='trg_word_emb',
        param_attr=paddle.attr.Param(initial_mean=0., initial_std=0.1))
    trg_pos_emb = paddle.layer.embedding(
        input=trg_pos,
        size=emb_dim,
        name='trg_pos_emb',
        param_attr=paddle.attr.Param(initial_mean=0., initial_std=0.1))

    decoder_out = decoder(
        token_emb=trg_emb,
        pos_emb=trg_pos_emb,
        encoded_vec=encoded_vec,
        encoded_sum=encoded_sum,
        dict_size=trg_dict_size,
        conv_blocks=dec_conv_blocks,
        drop_rate=drop_rate)

    if is_infer:
        return decoder_out

    trg_next_word = paddle.layer.data(
        name='trg_next_word',
        type=paddle.data_type.integer_value_sequence(trg_dict_size))
    cost = paddle.layer.classification_cost(
        input=decoder_out, label=trg_next_word)

    return cost