train.py 5.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
from __future__ import print_function

import argparse
import logging
import os

# disable gpu training for this example 
os.environ["CUDA_VISIBLE_DEVICES"] = ""

import paddle
import paddle.fluid as fluid

import reader
from network_conf import skip_gram_word2vec

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


def parse_args():
    parser = argparse.ArgumentParser(description="PaddlePaddle CTR example")
    parser.add_argument(
        '--train_data_path',
        type=str,
Q
Qiao Longfei 已提交
26
        default='./data/enwik8',
Q
Qiao Longfei 已提交
27
        help="The path of training dataset")
Q
Qiao Longfei 已提交
28 29 30
    parser.add_argument(
        '--dict_path',
        type=str,
Q
Qiao Longfei 已提交
31
        default='./data/enwik8_dict',
Q
Qiao Longfei 已提交
32
        help="The path of data dict")
Q
Qiao Longfei 已提交
33 34 35
    parser.add_argument(
        '--test_data_path',
        type=str,
Q
Qiao Longfei 已提交
36
        default='./data/text8',
Q
Qiao Longfei 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        help="The path of testing dataset")
    parser.add_argument(
        '--batch_size',
        type=int,
        default=100,
        help="The size of mini-batch (default:1000)")
    parser.add_argument(
        '--num_passes',
        type=int,
        default=10,
        help="The number of passes to train (default: 10)")
    parser.add_argument(
        '--model_output_dir',
        type=str,
        default='models',
        help='The path for model to store (default: models)')
    parser.add_argument(
        '--embedding_size',
        type=int,
        default=64,
        help='sparse feature hashing space for index processing')

    parser.add_argument(
        '--is_local',
        type=int,
        default=1,
        help='Local train or distributed train (default: 1)')
    # the following arguments is used for distributed train, if is_local == false, then you should set them
    parser.add_argument(
        '--role',
        type=str,
        default='pserver',  # trainer or pserver
69
        help='The training role (trainer|pserver) (default: pserver)')
Q
Qiao Longfei 已提交
70 71 72 73 74 75 76 77 78
    parser.add_argument(
        '--endpoints',
        type=str,
        default='127.0.0.1:6000',
        help='The pserver endpoints, like: 127.0.0.1:6000,127.0.0.1:6001')
    parser.add_argument(
        '--current_endpoint',
        type=str,
        default='127.0.0.1:6000',
79
        help='The current pserver endpoint (default: 127.0.0.1:6000)')
Q
Qiao Longfei 已提交
80 81 82 83
    parser.add_argument(
        '--trainer_id',
        type=int,
        default=0,
84
        help='The current trainer id (default: 0)')
Q
Qiao Longfei 已提交
85 86 87 88 89 90 91 92 93
    parser.add_argument(
        '--trainers',
        type=int,
        default=1,
        help='The num of trianers, (default: 1)')

    return parser.parse_args()


Q
Qiao Longfei 已提交
94 95
def train_loop(args, train_program, reader, data_list, loss, trainer_num,
               trainer_id):
Q
Qiao Longfei 已提交
96 97
    train_reader = paddle.batch(
        paddle.reader.shuffle(
Q
Qiao Longfei 已提交
98
            reader.train(), buf_size=args.batch_size * 100),
Q
Qiao Longfei 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        batch_size=args.batch_size)
    place = fluid.CPUPlace()

    feeder = fluid.DataFeeder(feed_list=data_list, place=place)
    data_name_list = [var.name for var in data_list]

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    for pass_id in range(args.num_passes):
        for batch_id, data in enumerate(train_reader()):
            loss_val = exe.run(train_program,
                               feed=feeder.feed(data),
                               fetch_list=[loss])
            if batch_id % 10 == 0:
                logger.info("TRAIN --> pass: {} batch: {} loss: {}".format(
                    pass_id, batch_id, loss_val[0] / args.batch_size))
            if batch_id % 1000 == 0 and batch_id != 0:
                model_dir = args.model_output_dir + '/batch-' + str(batch_id)
                if args.trainer_id == 0:
                    fluid.io.save_inference_model(model_dir, data_name_list,
                                                  [loss], exe)
        model_dir = args.model_output_dir + '/pass-' + str(pass_id)
        if args.trainer_id == 0:
            fluid.io.save_inference_model(model_dir, data_name_list, [loss],
                                          exe)


def train():
    args = parse_args()

    if not os.path.isdir(args.model_output_dir):
        os.mkdir(args.model_output_dir)

Q
Qiao Longfei 已提交
132 133
    word2vec_reader = reader.Word2VecReader(args.dict_path,
                                            args.train_data_path)
134 135 136 137 138

    logger.info("dict_size: {}".format(word2vec_reader.dict_size))
    logger.info("word_frequencys length: {}".format(len(word2vec_reader.word_frequencys)))

    loss, data_list = skip_gram_word2vec(word2vec_reader.dict_size, word2vec_reader.word_frequencys, args.embedding_size)
Q
Qiao Longfei 已提交
139 140 141 142 143 144
    optimizer = fluid.optimizer.Adam(learning_rate=1e-3)
    optimizer.minimize(loss)

    if args.is_local:
        logger.info("run local training")
        main_program = fluid.default_main_program()
Q
Qiao Longfei 已提交
145
        train_loop(args, main_program, word2vec_reader, data_list, loss, 1, -1)
Q
Qiao Longfei 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    else:
        logger.info("run dist training")
        t = fluid.DistributeTranspiler()
        t.transpile(
            args.trainer_id, pservers=args.endpoints, trainers=args.trainers)
        if args.role == "pserver":
            logger.info("run pserver")
            prog = t.get_pserver_program(args.current_endpoint)
            startup = t.get_startup_program(
                args.current_endpoint, pserver_program=prog)
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup)
            exe.run(prog)
        elif args.role == "trainer":
            logger.info("run trainer")
            train_prog = t.get_trainer_program()
Q
Qiao Longfei 已提交
162 163
            train_loop(args, train_prog, word2vec_reader, data_list, loss,
                       args.trainers, args.trainer_id + 1)
Q
Qiao Longfei 已提交
164 165 166 167


if __name__ == '__main__':
    train()